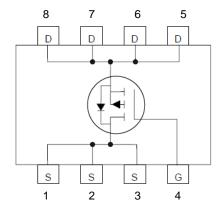


Description

This P-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

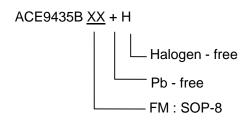
Features


- VDS(V)=-320V, I_D=-5.24.1A
- RDS(ON)=51m Ω @ V_{GS}=-10V
- RDS(ON)= $68m\Omega$ @ V_{GS}=-4.5V
- High density cell design for low R_{DS(ON)}

Absolute Maximum Ratings

<u> </u>									
Parameter		Symbol	Max	Unit					
Drain-Source Voltage		V_{DSS}	-30	٧					
Gate-Source Voltage		V_{GSS}	±20	٧					
Drain Current (Note 1)	Continuous T _A =25 °C		-5.2	Α					
	Pulsed (Note 2)	- I _D	-50						
Total Power Dissipation (Note 1)		P_D	1.5	W					
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	οС					

Packaging Type

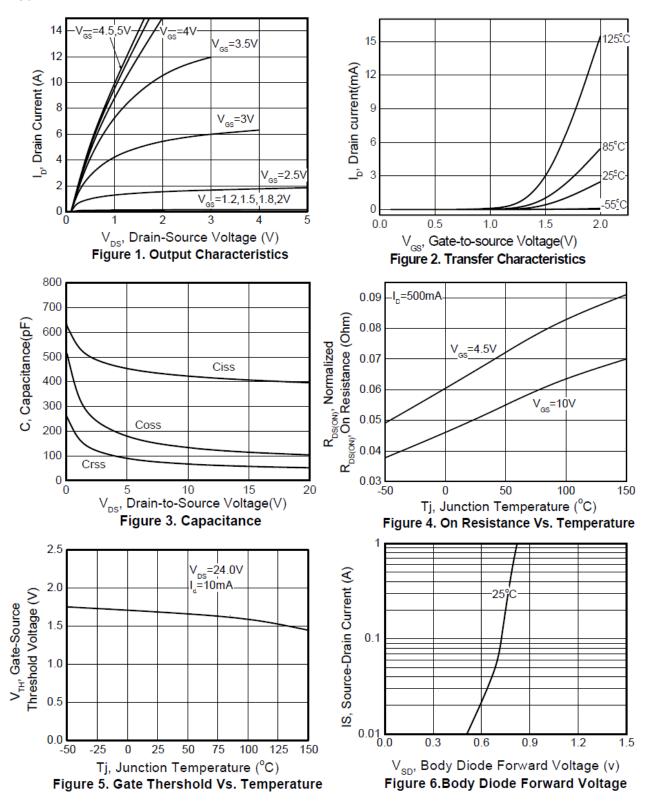

SOP-8

Ordering information

Electrical Characteristics

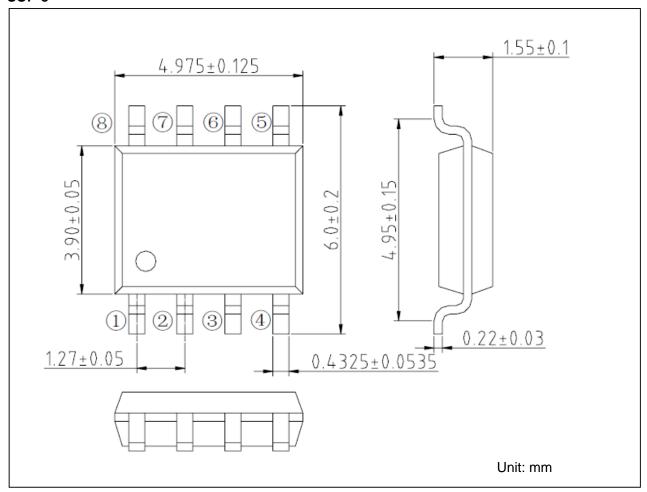
 T_A =25 $^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit				
Off characteristics										
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_D =-250uA	-30	-36		V				
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-24V, V_{GS} =0V		0.02	-1	uA				
Gate Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V		±1.5	±100	nA				
On characteristics										
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-4.6A		51	60	mΩ				
		V_{GS} =-4.5V, I_{D} =-2A		68	82					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-1	-1.46	-3	V				
Forward Transconductance	g FS	V_{DS} =-5V, I_{D} =-6A		12		S				
Switching										
Turn-On Delay Time	T _{d(on)}	V_{DS} =-15V, R_L =2.5 Ω	8.6							
Turn-Off Delay Time	t _{d(off)}	$R_{GEN}=3\Omega$, $V_{GS}=-10V$	$R_{GEN}=3\Omega$, $V_{GS}=-10V$	28.2		ns				
Dynamic Characteristics										
Input Capacitance	C _{iss}	V _{DS} =-15V, V _{GS} =0V f=1MHz		550		pF				
Output Capacitance	C _{oss}			60						
Reverse Transfer Capacitance	C _{rss}	I= I IVITIZ		50						
Drain-source diode characteristics and maximum ratings										
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =-1A		-0.81		V				


Note: 1. The value of P_D is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the DC thermal resistance rating.

2. Repetitive rating, pulse width limited by junction temperature.

Typical Performance Characteristics



Packing Information

SOP-8

ACE9435B

P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/