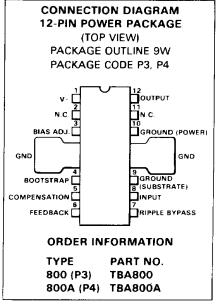
TBA800 • TBA800A

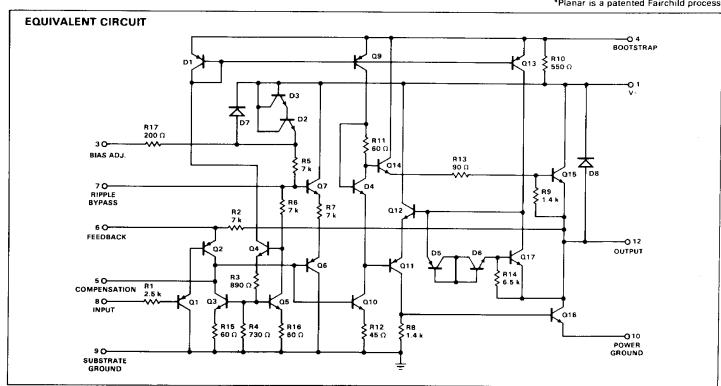
5-WATT AUDIO AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The TBA800 is a monolithic Audio Power Amplifier constructed using the Fairchild Planar* Epitaxial process. The external cooling tabs enable 2.5 W output power to be achieved without external heat sink and 5 W output power using a small area of the pc board copper as a heat sink.


It is ideally suited as an audio amplifier in solid state television receivers and other Class B audio amplifier applications over a wide range of supply voltage (5-30 V).

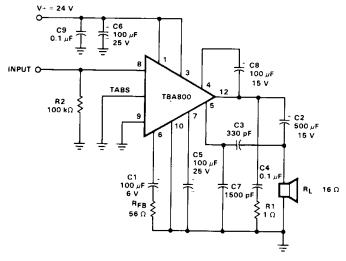
- OUTPUT POWER 5 W (24 V 16 Ω)
- LOW DISTORTION
- WIDE SUPPLY VOLTAGE RANGE (5-30 V)
- HIGH PEAK OUTPUT CURRENT (1.5 A)
- HIGH EFFICIENCY


ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Output Peak Current (Non-Repetitive)
Output Current (Repetitive)
Power Dissipation: $(T_A = 80^{\circ}C)$ $(T_{tab} = 90^{\circ}C)$ Storage and Junction Temperature
Pin Temperature (Soldering 10 s)

30 V 2 A 1.5 A 1 W 5 W -40°C to +150°C 230°C

*Planar is a patented Fairchild process.


FAIRCHILD • TBA800 • TBA800A

CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage		5.0		30	V
Quiescent Output Voltage (Pin 12)	V+ = 24 V	11	12	13	V
Quiescent Drain Current (Pin 1)	V+ = 24 V		9.0	20	mA
Bias Current (Pin 8)	V+ = 24 V		1.0	5.0	μΑ
Output Power	THD = 10%, $R_L = 16 \Omega$, $V+ = 24 V$, $f = 1 kHz$	4.4	5.0		w
Input Saturation Voltage (rms)		220			mV
Input Sensitivity (rms)	$P_{OUT} = 5 \text{ W}, V + = 24 \text{ V}, R_L = 16 \Omega, f = 1 \text{ kHz}$		80		mV
Input Resistance (Pin 8)			5.0		ΜΩ
Frequency Response -3.0 dB	$V+ = 24 \text{ V, R}_{L} = 16 \Omega, C_{3} = 330 \text{ pF}$		40 - 20,000		Hz
Total Harmonic Distortion	armonic Distortion $P_{OUT} = 50 \text{ mW} \text{ to } 2.5 \text{ W}, \text{ V+} = 24 \text{ V}, \text{ R}_{L} = 16 \Omega,$ f = 1 kHz		0.5		%
Voltage Gain (Open Loop)	$V+ = 24 \text{ V}, \text{ R}_{L} = 16 \Omega, \text{ f} = 1 \text{ kHz}$		80		dB
Voltage Gain (Closed Loop)	$V+ = 24 \text{ V}, R_L = 16 \Omega, f = 1 \text{ kHz}$	39	42	45	dB
Input Noise Voltage	$V+ = 24 \text{ V}, \text{ Rg} = 0 \Omega, \text{ BS } (-3.0 \text{ dB}) = 40-20,000 \text{ Hz}$		5.0		μV
Input Noise Current	V+ = 24 V, BW (-3.0 dB) = 40-20,000 Hz		0.2		nA
Efficiency	P _{OUT} = 5 W, V+ = 24 V, R _L = 16 Ω, f = 1 kHz		75		%

PACKAGE THERMAL RESISTANCE		TBA800		TBA800A		
$ heta$ J $_{tab}$	Thermal resistance junction-tab	max	12 °C/W	10 °C/W		
θJ_{A}	Thermal resistance junction-ambient	max	70* °C/W	80 °C/W		

^{*}Obtained with tabs soldered to printed circuit with minimum copper area.

TEST CIRCUIT

C3, C7 see Performance Curves

TYPICAL PERFORMANCE CURVES

OUTPUT POWER AS A FUNCTION OF SUPPLY VOLTAGE

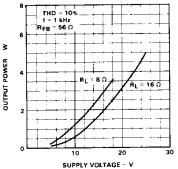


Fig. 1

MAXIMUM POWER DISSIPATION AS A FUNCTION OF SUPPLY VOLTAGE

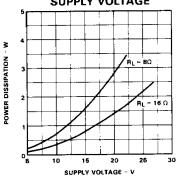


Fig. 2

TOTAL HARMONIC DISTORTION AS A FUNCTION OF **OUTPUT POWER**

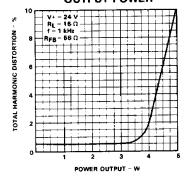


Fig. 3

TOTAL HARMONIC DISTORTION AS A FUNCTION OF FREQUENCY

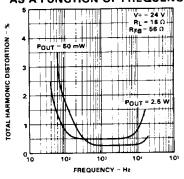


Fig. 4

VALUE OF C3 AS A FUNCTION REB FOR VARIOUS VALUES OF BW



Fig. 5

VOLTAGE GAIN (CLOSED LOOP) AND INPUT VOLTAGE AS A **FUNCTION OF REB**

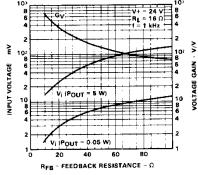


Fig. 6

POWER DISSIPATION AND EFFICIENCY AS A FUNCTION OF OUTPUT POWER

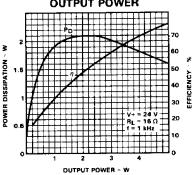


Fig. 7

QUIESCENT OUTPUT VOLTAGE (PIN 12) AS A FUNCTION OF SUPPLY VOLTAGE

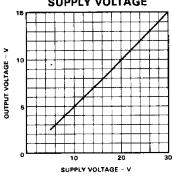
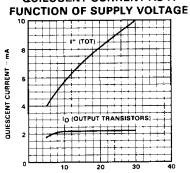



Fig. 8

QUIESCENT CURRENT AS A

SUPPLY VOLTAGE - V Fig. 9

TYPICAL PERFORMANCE CURVES (cont'd)

Fig. 10

OUTPUT POWER VERSUS SUPPLY VOLTAGE (FIG. 15 CIRCUIT) THD = 10% 1 = 1 kHz Reg = 8 Ω RL = 8 Ω RL = 16 Ω SUPPLY VOLTAGE - V

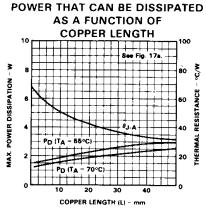


Fig. 11

Fig. 12

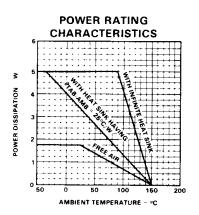
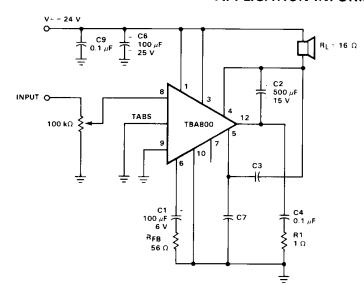
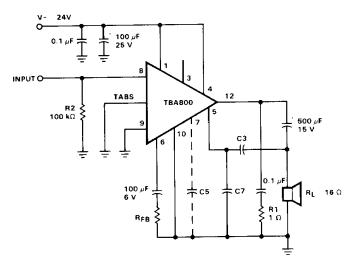



Fig. 13

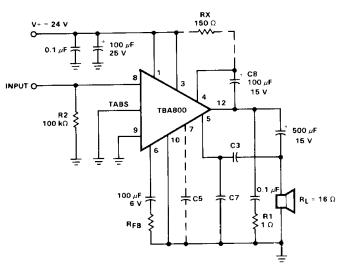
APPLICATION INFORMATION



NOTE: Compared with the other circuits, this configuration uses a smaller number of external components and can be used at low supply voltages.

C3, C7 see Performance Curves

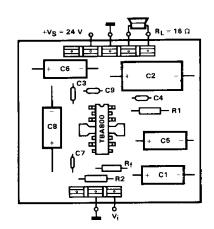
Fig. 14. Circuit with the Load Connected to the Supply Voltage


APPLICATION INFORMATION (Cont'd)

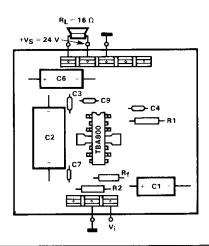
NOTE: This circuit is only for use at high voltages. If pin 3 is left open circuit, this automatically inserts diodes D2 - D3 (see schematic diagram) and enables a symmetrical signal to be obtained at the output. Refer to Figs. 10 and 11 for distortion and output power.

C3, C7 see Performance Curves

Fig. 15. Circuit with Load Connected to Ground without Bootstrap



NOTE: The bootstrap capacitor C8 enables the same electrical characteristics as those of the test circuit to be achieved. For low supply voltage operation (e.g. 9 to 14 V) RX (150 Ω) is connected between pin 1 and pin 4.


Fig. 16. Circuit with Load Connected to Ground with Bootstrap

NOTE: For the circuits of Fig. 15 and 16 an excellent supply voltage ripple rejection is obtained by connecting the capacitor C5 (10 to 100 μ F = 25 V) between pin 7 and ground.

PC Board and Component Layout of the Test Circuit

PC Board Layout (Fig. 14 Circuit)

FAIRCHILD • TBA800 • TBA800A

MOUNTING INSTRUCTIONS – The tabs on the TBA800 can be used to conduct away the heat generated in the integrated circuit so that the junction temperature does not exceed the permissible maximum (150°C). This may be done by connecting tabs to an external heat sink, or by soldering it to a suitable copper area of the printed circuit board (*Fig. 17a*), *Fig. 17b* shows a simple type of heat sink. Assuming an area of copper on the printed circuit board of only 2 cm², the total θ between junction to ambient is approximately 30°C/W.

For TBA800A, the desired thermal resistance is obtained attaching the hardware shown in *Fig. 17c*, to a bracket with proper dimensions. This bracket can also act as a support for the whole printed circuit board.

External heat sink or printed circuit copper area must be connected to electrical ground.

In the latter case, Fig. 12 shows the maximum dissipated power (for $T_A = 55$ °C) as a function of the side of two equal square copper areas having a thickness of 35 μ (1.4 mils).

Fig. 17a. Example of an area of PC board copper soldered to the tabs of the TBA800, which is used as a heat dissipator.

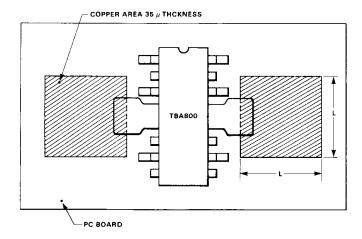


Fig. 17b. Example of TBA800 with external heat sink.

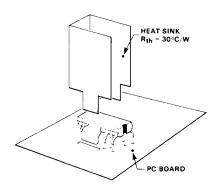
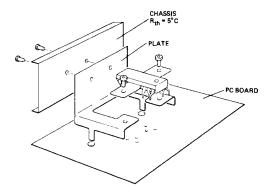



Fig. 17c. Example of TBA800A with external heat sink.

PROCEDURE TO CALCULATE AREA OF COPPER NEEDED

1) Calculate maximum power dissipation

$$P_D = 0.4 \cdot \frac{V^{+2} max}{8 R_L} + V^{+} max I^{+}$$

where

 $V^{+}_{\mbox{max}} = \mbox{maximum value of supply voltage (inccrease 10% if not stabilized)}$

R_I = load resistance

 I^+ = quiescent drain current for typical value see *Fig. 9*; maximum value at V^+ = 24 V is 20 mA (for worst case design)

$$T_{A max} = 70$$
°C

From Fig. 12, and knowing T_{A(max)}, calculate copper length ("L")

Examples:

a) V+ (not stabilized) = 24 V; $R_L = 16 \Omega$

$$P_D = 0.4 \cdot \frac{(24 + 2.4)^2}{8 \cdot 16} + (24 + 2.4) \cdot 20 \cdot 10^{-3} = 2.6 \text{ W}$$

From Fig. 12 L ≈ 25 mm

For geometries different from the one of *Fig. 17* note that copper areas near the tabs have better efficiency as regards power dissipation. Therefore additional safety factors must be added for worst case designs.

b) V+ (stabilized) = 12 V;
$$R_L = 8 \Omega$$

$$P_D = 0.4 \cdot \frac{12^2}{8 \cdot 8} + 0.02 \cdot 12 = 1 \text{ W}$$

The Fig. 12 shows that no heat sink is required if $T_A \le 55$ °C.