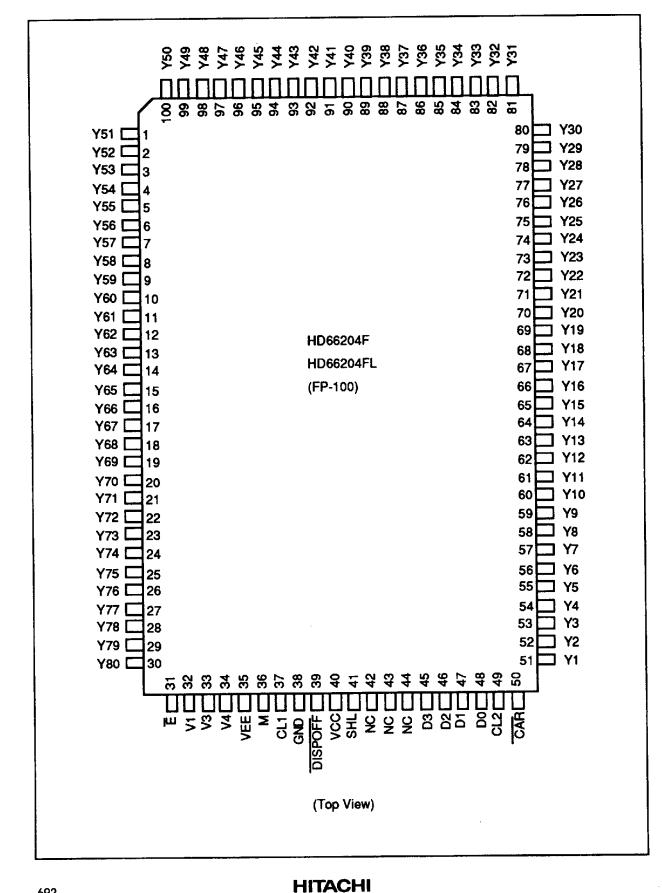
HD66204 (Dot Matrix Liquid Crystal Graphic Display Column Driver with 80-Channel Outputs)

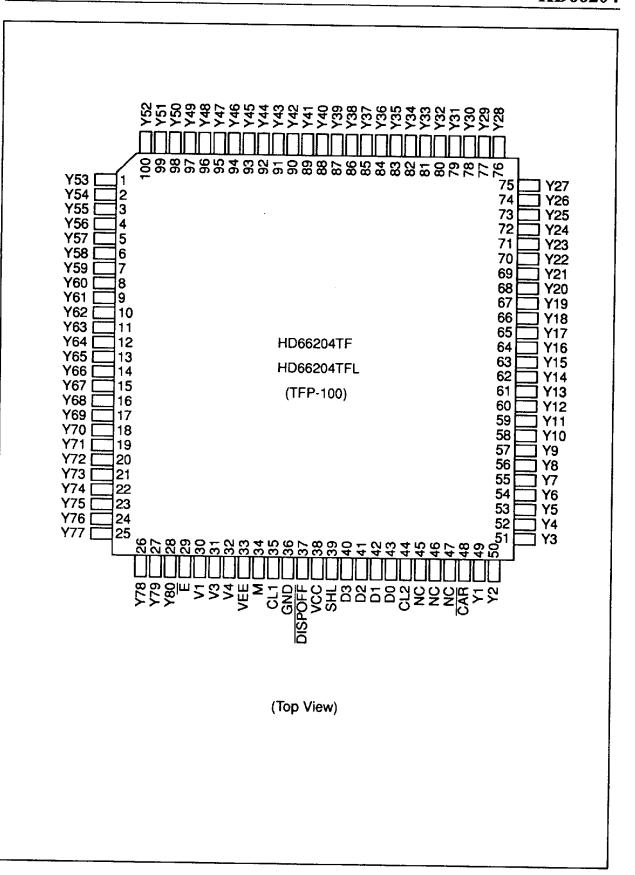
Description

The HD66204F/HD66204FL/HD66204TF/HD 66204TFL, the column driver for a large liquid crystal graphic display, features as many as 80 LCD outputs powered by 80 internal LCD drive circuits. This device latches 4-bit parallel data sent from an LCD controller, and generates LCD drive signals. In standby mode provided by its internal standby function, only one drive circuit operates, lowering power dissipation. The HD66204 has a complete line-up: the HD66204F, a standard device powered by 5 V \pm 10%; the HD66204FL, a 2.7-5.5 V, low power dissipation device suitable for battery-driven portable equipment such as "notebook" personal computers and palm-top personal computers; and the HD66204TF and HD66204TFL, thin package devices powered by 5 V \pm 10% and 2.7-5.5 V, respectively.


Features

- Duty cycle: 1/64 to 1/240
- High voltage
 - LCD drive: 10-28 V
- High clock speed
 - 8 MHz max under 5-V operation (HD66204F/HD66204TF)
 - 4 MHz max under 3-V operation (HD66204FL/HD66204TFL)
- Display off function
- Internal automatic chip enable signal generator
- Various LCD controller interfaces
 - LCTC series: HD63645, HD64645, HD64646
 - LVIC series: HD66840, HD66841
 - CLINE: HD66850

Type No.	Voltage Range	Package
HD66204F	5 V ± 10%	100-pin plastic QFP (FP-100)
HD66204TF	5 V ± 10%	100-pin thin plastic QFP (TFP-100)
HCD66204	5 V ± 10%	Chip
HD66204FL	2.7-5.5 V	100-pin plastic QFP (FP-100)
HD66204TFL	2.7–5.5 V	100-pin thin plastic QFP (TFP-100)
HCD66204L	2.7–5.5 V	


Ordering Information

Pin Arrangement

4496204 0046488 7T2 |

Downloaded from Elcodis.com electronic components distributor

HITACHI

HD66204

Pin Description

Symbol	Pin No. (FP-100/TFP-100)	Pin Name	Input/Output	Classification
V _{cc}	40/38	V _{cc}		Power supply
GND	38/36	GND		Power supply
V _{EE}	35/33	V _{EE}		Power supply
 V1	32/30	V1	Input	Power supply
V3	33/31	V3	input	Power supply
V4	34/32	V4	Input	Power supply
CL1	37/35	Clock 1	Input	Control signal
CL2	49/44	Clock 2	Input	Control signal
M	36/34	M	Input	Control signal
D ₀ D ₃	48-45/43-40	Data 0-data 3	Input	Control signal
SHL	41/39	Shift left	Input	Control signal
E	31/29	Enable	Input	Control signal
CAR	50/48	Carry	Output	Control signal
DISPOFF	39/37	Display off	Input	Control signal
Y ₁ -Y ₈₀	51-100, 1-30/49-100, 1-28	Y1-Y80	Output	LCD drive output
NC	42, 43, 44/45, 46, 47	No connection		<u> </u>

Pin Functions

Power Supply

 V_{CC} , V_{EE} , GND: V_{CC} -GND supplies power to the internal logic circuits. V_{CC} - V_{EE} supplies power to the LCD drive circuits.

V1, V3, V4: Supply different levels of power to drive the LCD. V1 and V_{EE} are selected levels, and V3 and V4 are non-selected levels. See figure 1.

Control Signal

Downloaded from Elcodis.com electronic components distributor

CL1: Inputs display data latch pulses for the line data latch circuit. The line data latch circuit latches display data input from the 4-bit latch circuit, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CL1 pulse.

CL2: Inputs display data latch pulses for the 4-bit latch circuit. The 4-bit latch circuit latches display data input via D_0-D_3 at the falling edge of each CL2 pulse.

M: Changes LCD drive outputs to AC.

 D_0-D_3 : Input display data. High-voltage level of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level data corresponds to a non-selected level and turns an LCD pixel off.

HD66204

SHL: Shifts the destinations of display data output. See figure 2.

 \overline{E} : A low \overline{E} enables the chip, and a high \overline{E} disables the chip.

CAR: Outputs the \overline{E} signal to the next HD66204 if HD66204s are connected in cascade.

DISPOFF: A low $\overrightarrow{\text{DISP}}$ sets LCD drive outputs $Y_1 - Y_{80}$ to V1 level.

LCD Drive Output

 Y_1-Y_{80} : Each Y outputs one of the four voltage levels V1, V3, V4, or V_{EE} , depending on a combination of the M signal and display data levels. See figure 3.

NC: Must be open.

V1 V3 V4 VEE

Figure 1 Different Power Supply Voltage Levels for LCD Drive Circuits

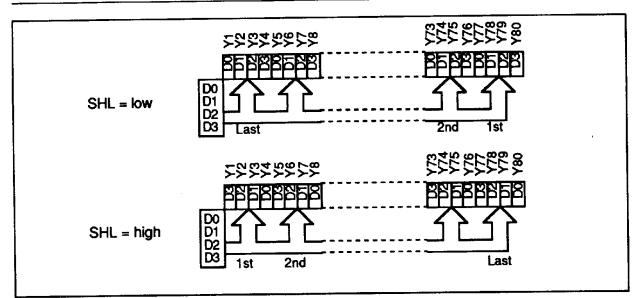


Figure 2 Selection of Destinations of Display Data Output

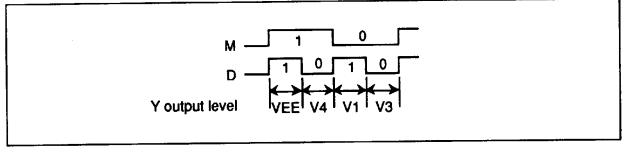


Figure 3 Selection of LCD Drive Output Level

Block Functions

LCD Drive Circuit

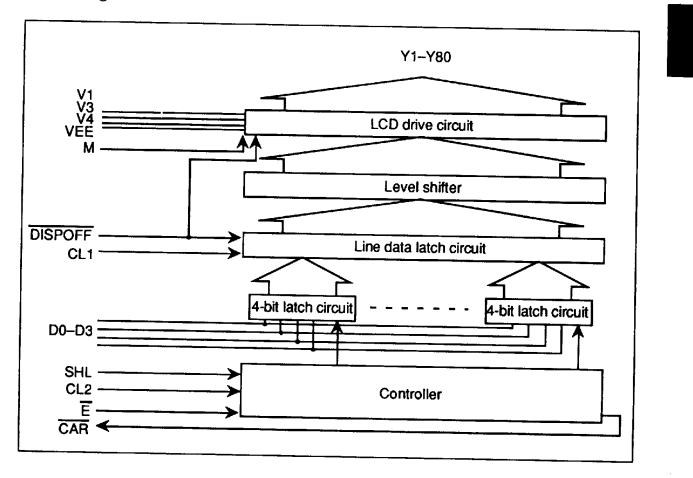
Controller: The controller generates the latch signal at the falling edge of each CL2 pulse for the 4-bit latch circuit.

4-Bit Latch Circuit

The 4-bit latch circuit latches 4-bit parallel data input via the D_0 to D_3 pins at the timing generated by the control circuit.

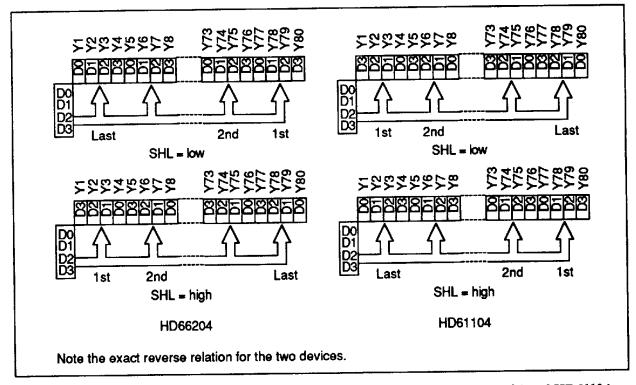
Line Data Latch Circuit

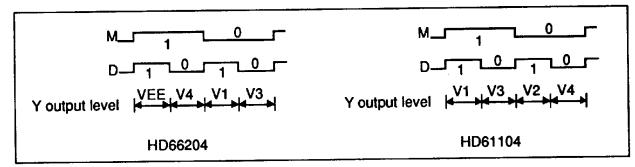
The 80-bit line data latch circuit latches data input from the 4-bit latch circuit, and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (CL1) pulse.


Block Diagram

The level shifter changes 5-V signals into high-voltage signals for the LCD drive circuit.

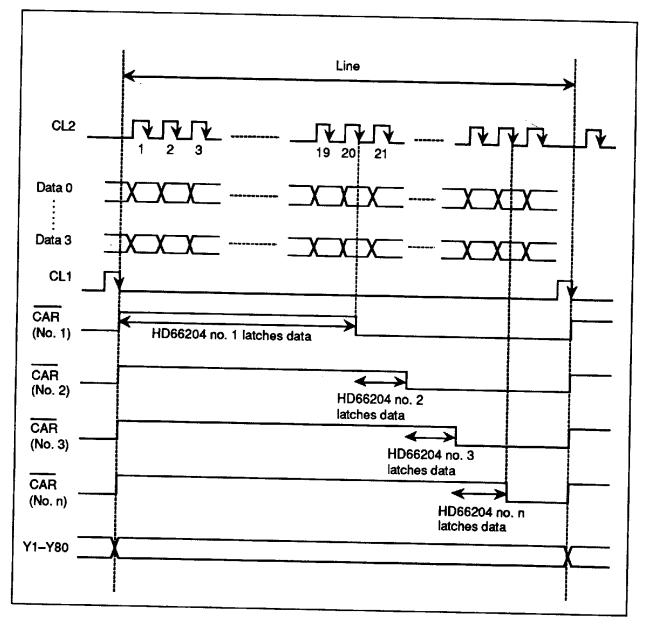
LCD Drive Circuit

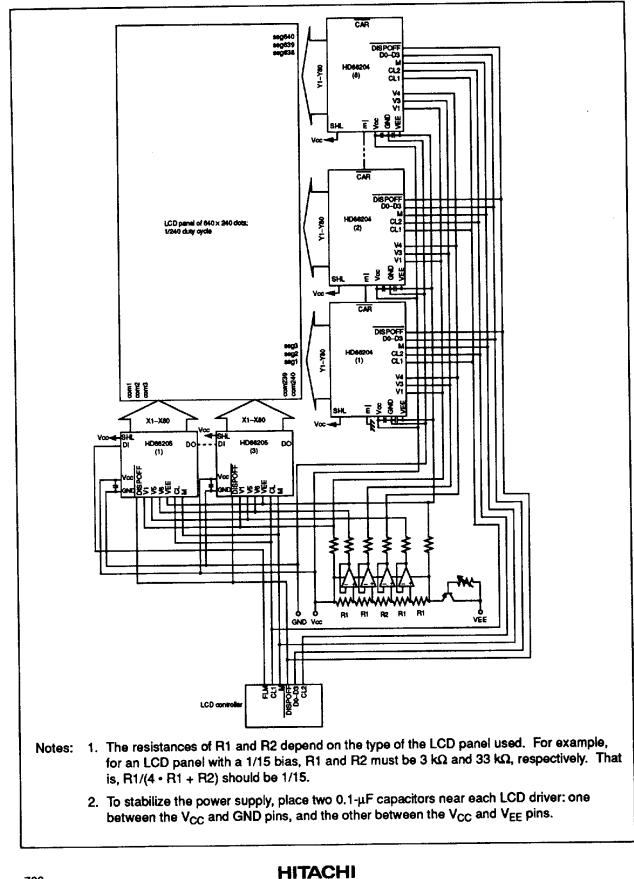

The 80-bit LCD drive circuit generates four voltage levels V1, V3, V4, and VEE, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the line data latch circuit.


HITACHI

Comparison of the HD66204 with the HD61104

Item	HD66204	HD61104
Clock speed	8.0 MHz max.	3.5 MHz max.
Display off function	Provided	Not provided
LCD drive voltage range	10–28 V	10–26 V
Relation between SHL and LCD output destinations	See figure 4	See figure 4
Relation between LCD output levels, M, and data	See figure 5	See figure 5
LCD drive V pins	V1, V3, V4 (V2 level is the same as VEE level)	V1, V2, V3, V4


Figure 4 Relation between SHL and LCD Output Destinations for the HD66204 and HD61104


Operation Timing

HITACHI

4496204 0046495 932 📖

Application Example

nnaon

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V _{cc}		1	
Power supply voltage for LCD drive circuits	V _{EE}	$V_{CC} - 30.0$ to $V_{CC} + 0.3$	v	
Input voltage 1	V _{T1}	-0.3 to V _{CC} + 0.3	v	1.2
Input voltage 2	V _{T2}	$V_{EE} - 0.3$ to $V_{CC} + 0.3$	v	1, 2
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	• <u>C</u>	
Viotoo: 1 The set and the set			<u> </u>	

Notes: 1. The reference point is GND (0 V).

- 2. Applies to pins CL1, CL2, M, SHL, E, D₀-D₃, DISPOFF.
- 3. Applies to pins V1, V3, and V4.
- If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability.

Electrical Characteristics

DC Characteristics for the HD66204F/HD66204TF ($V_{CC} = 5 V \pm 10\%$, GND = 0 V, $V_{CC} - V_{EE} = 10$ to 28 V, and Ta = -20 to +75°C, unless otherwise noted.)

Item	Symbol	Pins	Min.	Тур.	Max.	Unit	Condition	Notes
Input high voltage	V _{IH}	1	$0.7 \times V_{CC}$		v	V		110183
Input low voltage	VIL	1	0		0.3 × V _{CC}			•
Output high voltage	V _{OH}	2	V _{CC} - 0.4		<u> </u>	v	l _{OH} = -0.4 mA	
Output low voltage	VOL	2			0.4	v	$l_{OL} = 0.4 \text{ mA}$	<u> </u>
Vi–Yj on resistance	R _{ON}	3			4.0	kΩ		
Input leakage current 1		1	-1.0		1.0	μ Α	$l_{ON} = 100 \mu\text{A}$	1
Input leakage current 2	1 _{11,2}	4	-25		25	μ <u>Α</u>	$V_{\rm IN} = V_{\rm CC}$ to GND	
Current consumption 1	I _{GND}		_		3.0	mA	$V_{IN} = V_{CC} \text{ to } V_{EE}$ $f_{CL2} = 8.0 \text{ MHz}$ $f_{CL1} = 20 \text{ kHz}$ $V_{CC} - V_{EE} = 28 \text{ V}$	2
Current consumption 2	IEE			150	500	μ Α	Same as above	
Current consumption 3	I _{ST}	<u> </u>			200	μ Α	Same as above	2 2, 3

Pins and notes on next page.

HITACHI

4496204 0046497705 🔳

DC Characteristics for the HD66204FL/HD66204TFL ($V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $V_{CC} - V_{EE} = 10$ to 28 V, and Ta = -20 to +75°C, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Condition	Notes
Input high voltage	VIH	1	$0.7 \times V_{CC}$	V _{CC}	V	·	-
Input low voltage	VIL	1	0	$0.3 \times V_{CC}$	V	·	
Output high voltage	V _{OH}	2	V _{CC} - 0.4	—	V	l _{OH} = -0.4 mA	
Output low voltage	Vol	2		0.4	V	l _{OL} = 0.4 mA	
Vi-Yi on resistance	R _{ON}	3		4.0	kΩ	l _{ON}	1
Input leakage current 1	I _{IL1}	1	-1.0	1.0	μ A	$V_{IN} = V_{CC}$ to GND	
Input leakage current 2	l _{IL2}	4	-25	25	μA	$V_{IN} = V_{CC}$ to V_{EE}	
Current consumption 1	I _{GND}			1.0	mA	$f_{CL2} = 4.0 \text{ MHz}$ $f_{CL1} = 16.8 \text{ kHz}$ $f_M = 35 \text{ Hz}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} - V_{EE} = 28 \text{ V}$ Checker-board pattern	2
Current consumption 2	I _{EE}			500	μA	Same as above	2
Current consumption 3				50	μ A	Same as above	2, 3
Pins:	1.	CL1,	CL2, M, SHL,	E, D ₀ –D ₃ , D	ISPOF	F	

2. CAR

- 3. Y₁-Y₈₀, V1, V3, V4
- 4. V1, V3, V4
- Notes: 1. Indicates the resistance between one pin from Y₁-Y₈₀ and another pin from V1, V3, V4, and V_{EE}, when load current is applied to the Y pin; defined under the following conditions.

 $V_{CC} - GND = 28 V$

 $V1, V3 = V_{CC} - \{2/10(V_{CC} - V_{EE})\}$

 $V4 = V_{EE} + \{2/10(V_{CC} - V_{EE})\}$

V1 and V3 should be near V_{CC} level, and V4 should be near V_{EE} level (figure 6). All voltage must be within ΔV . ΔV is the range within which R_{ON}, the LCD drive circuits' output impedance, is stable. Note that ΔV depends on power supply voltage V_{CC}-V_{EE} (figure 7).

 Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, V_{IH} and V_{IL} must be held to V_{CC} and GND levels, respectively.

HITACHI

4496204 0046498 641

3. Applies to standby mode.

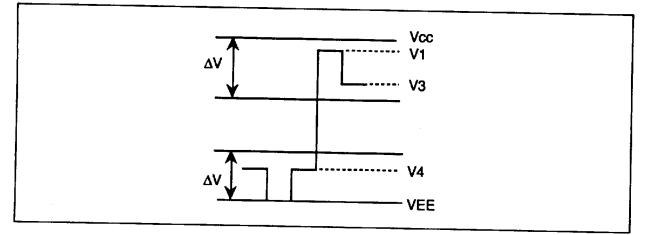


Figure 6 Relation between Driver Output Waveform and Level Voltages

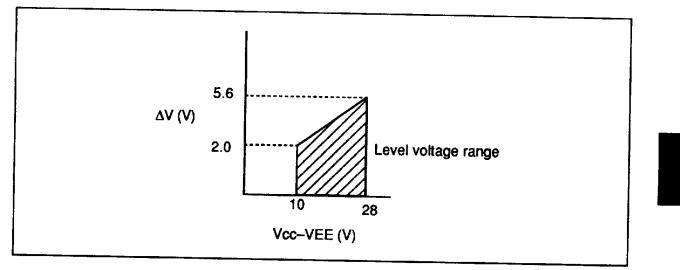


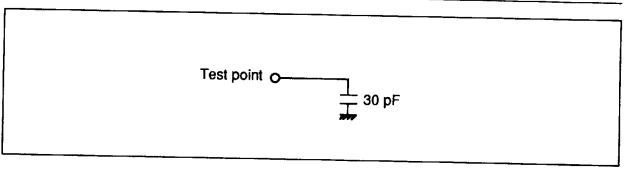
Figure 7 Relation between V_{CC} – V_{EE} and ΔV

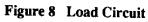
AC Characteristics for the HD66204F/HD66204TF ($V_{CC} = 5 V \pm 10\%$, GND = 0 V, and Ta = -20 to +75°C, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	tcyc	CL2	125		ns	
Clock high-level width 1	^t CWH	CL1, CL2	45		ns	
Clock low-level width	^t CWL	CL2	45		ns	
Clock setup time	tSCL	CL1, CL2	80		ns	
Clock hold time	tHCL	CL1, CL2	80		ns	
Clock rise time	t _r	CL1, CL2	_	Note 1	ns	1
Clock fall time	t _f	CL1, CL2		Note 1	ns	1
Data setup time	t _{DS}	D ₀ D ₃ , CL2	20		ns	
Data hold time	t _{DH}	D ₀ -D ₃ , CL2	20		ns	
Enable (E) setup time	tesu	E, CL2	30		ns	
Carry (CAR) output delay time	^t car	CAR, CL2		80	ns	2
M phase difference time	tсм	M, CL2		300	ns	
CL1 cycle time	t _{CL1}	CL1	t _{CYC} × 50		ns	

AC Characteristics for the HD66204FL/HD66204TFL ($V_{CC} = 2.7$ to 5.5V, GND = 0 V, and Ta = -20 to +75°C, unless otherwise noted.)

Symbol	Pins	Min.	Max.	Unit	Notes
tcyc	CL2	250		ns	
tсwн	CL1, CL2	95		ns	
tCWL	CL2	95		ns	
tSCL	CL1, CL2	80		ns	
tHCL	CL1, CL2	80		ns	
t,	CL1, CL2		Note 1	ns	1
tf	CL1, CL2	-	Note 1	ns	1
t _{DS}	D ₀ -D ₃ , CL2	50		ns	
t _{DH}	D ₀ -D ₃ , CL2	50	<u> </u>	ns	
tesu	Ē, CL2	65		ns	
^t CAR	CAR, CL2		155	ns	2
^t см	M, CL2	_	300	ns	
t _{CL1}	CL1	$t_{CYC} \times 50$	_	ns	
	tcyc tcwH tcwL tscL tHCL tr tf tDH tESU tcAR tCM	$\begin{tabular}{ c c c c c c } \hline t_{CYC} & CL2 \\ \hline t_{CWH} & CL1, CL2 \\ \hline t_{CWL} & CL2 \\ \hline t_{SCL} & CL1, CL2 \\ \hline t_{HCL} & CL1, CL2 \\ \hline t_{HCL} & CL1, CL2 \\ \hline t_{f} & CL1, CL2 \\ \hline t_{f} & CL1, CL2 \\ \hline t_{DS} & D_0-D_3, CL2 \\ \hline t_{DH} & D_0-D_3, CL2 \\ \hline t_{ESU} & \overline{E}, CL2 \\ \hline t_{CAR} & \overline{CAR}, CL2 \\ \hline t_{CM} & M, CL2 \\ \hline t_{CL2} & CL4 \\ \hline t_{CM} & OL4 \\ \hline t_{CL2} & OL4 \\ \hline t_{CM} & OL2 \\ \hline t_{CL2} & OL4 \\ \hline t_{CL2} & OL4 \\ \hline t_{CM} & OL4 \\ \hline t_{CL2} & OL4 \\ \hline t_{CM} & OL4 \\ \hline t_{CL2} & OL4 \\ \hline t_{CM} & OL4 \\ \hline t_{CL2} & OL4 \\ \hline t_{CL2} & OL4 \\ \hline t_{CM} & OL4 \\ \hline t_{CL2} & OL4 \\$	tcyc CL2 250 tcwH CL1, CL2 95 tcwL CL2 95 tscL CL1, CL2 80 tHCL CL1, CL2 80 tr CL1, CL2 80 tr CL1, CL2 95 tgc CL1, CL2 80 tr CL1, CL2	toyn of the second	type CL2 250 ns tcwh CL1, CL2 95 ns tcwL CL2 95 ns tscL CL1, CL2 80 ns tgcL CL1, CL2 80 ns tr CL1, CL2 80 ns tr CL1, CL2 Note 1 ns tr CL1, CL2 Note 1 ns tbs D_0-D_3, CL2 50 ns tDH D_0-D_3, CL2 50 ns tESU E, CL2 65 ns tcAR CAR, CL2 300 ns tcM M, CL2 300 ns


Notes: 1. t_r , $t_f < (t_{CYC} - t_{CWH} - t_{CWL})/2$ and t_r , $t_f \le 50$ ns


2. The load circuit shown in figure 8 is connected.

HITACHI

704

4496204 0046500 02T **mm**

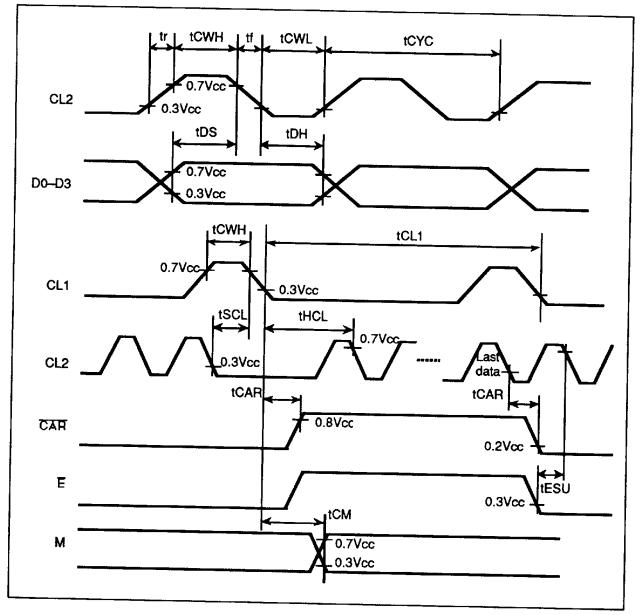


Figure 9 LCD Controller Interface Timing

4496204 0046501 T66 |

HITACHI