

# **Current Transducer LA 100-S/SP1**

 $I_{PN} = 100 A$ 

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





#### **Electrical data**

| I <sub>PN</sub><br>I <sub>P</sub><br>R <sub>M</sub>                         | Primary nominal r.m.s. current Primary current, measuring range Measuring resistance                                                                                         |                          | $ \begin{array}{ll} 100 \\ 0 \dots \pm 200 \\ \mathbf{R}_{\text{M min}}  \mathbf{R}_{\text{M max}} \end{array} $ |           | A<br>A              |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
|                                                                             | with ± 15 V                                                                                                                                                                  | @ ± 100 A <sub>max</sub> | 0<br>0                                                                                                           | 180<br>50 | $\Omega$            |
| I <sub>SN</sub> K <sub>N</sub> V <sub>C</sub> I <sub>C</sub> V <sub>d</sub> | @ ± 200 A <sub>max</sub> Secondary nominal r.m.s. current  Conversion ratio  Supply voltage (± 5 %)  Current consumption  R.m.s. voltage for AC isolation test, 50 Hz, 1 min |                          | 50<br>1:200<br>± 15<br>22 + I <sub>s</sub>                                                                       | 00        | mA<br>V<br>mA<br>kV |

# **Accuracy - Dynamic performance data**

| $egin{array}{c} \mathbf{x}_{_{G}} \ \mathbf{e}_{_{L}} \end{array}$ | Overall accuracy @ $\mathbf{I}_{PN,}$ $\mathbf{T}_{A}$ = 25°C Linearity                                             |                | ± 0.5 < 0.1         |                       | %<br>%            |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-----------------------|-------------------|
| I <sub>о</sub><br>I <sub>от</sub>                                  | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$        | - 10 °C + 70°C | Typ<br>± 0.2        | Max<br>± 0.1<br>± 0.4 | m A<br>m A        |
| t <sub>,</sub><br>di/dt<br>f                                       | Response time <sup>1)</sup> @ 90 % of <b>I</b> <sub>PN</sub> di/dt accurately followed Frequency bandwidth (- 1 dB) |                | < 1<br>> 50<br>DC 1 | 50                    | μs<br>Α/μs<br>kHz |

#### General data

| $T_{A}$          | Ambient operating temperature                     | - 10 + 70 | °C |
|------------------|---------------------------------------------------|-----------|----|
| T <sub>s</sub>   | Ambient storage temperature                       | - 25 + 85 | °C |
| $\mathbf{R}_{s}$ | Secondary coil resistance @ T <sub>A</sub> = 70°C | 85        | Ω  |
| m                | Mass                                              | 65        | g  |
|                  | Standards 2)                                      | EN 50178  |    |
|                  |                                                   |           |    |

#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

#### Special features

- I<sub>D</sub> = 0 .. ± 200 A
- $\mathbf{K}_{N} = 1:2000$

# **Advantages**

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

# **Applications**

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) With a di/dt of 50 A/µs

<sup>2)</sup> A list of corresponding tests is available.

991015/5

www.lem.com



# **Dimensions LA 100-S/SP1** (in mm. 1 mm = 0.0394 inch)



## **Mechanical characteristics**

General tolerance

Fastening

• Primary through-hole

• Connection of secondary

± 0.3 mm

2 holes  $\varnothing$  3.2 mm

16 x 10 mm

Molex 5045-04/AG

## Remarks

- I<sub>s</sub> is positive when I<sub>s</sub> flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- To measure nominal currents of less than 100 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns < 100 At).</li>

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.