Current Transducer LA 100-S/SP1 $I_{PN} = 100 A$ For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). #### **Electrical data** | I _{PN}
I _P
R _M | Primary nominal r.m.s. current Primary current, measuring range Measuring resistance | | $ \begin{array}{ll} 100 \\ 0 \dots \pm 200 \\ \mathbf{R}_{\text{M min}} \mathbf{R}_{\text{M max}} \end{array} $ | | A
A | |---|--|--------------------------|--|-----------|---------------------| | | with ± 15 V | @ ± 100 A _{max} | 0
0 | 180
50 | Ω | | I _{SN} K _N V _C I _C V _d | @ ± 200 A _{max} Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 min | | 50
1:200
± 15
22 + I _s | 00 | mA
V
mA
kV | # **Accuracy - Dynamic performance data** | $egin{array}{c} \mathbf{x}_{_{G}} \ \mathbf{e}_{_{L}} \end{array}$ | Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity | | ± 0.5 < 0.1 | | %
% | |--|---|----------------|---------------------|-----------------------|-------------------| | I _о
I _{от} | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$ | - 10 °C + 70°C | Typ
± 0.2 | Max
± 0.1
± 0.4 | m A
m A | | t _,
di/dt
f | Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) | | < 1
> 50
DC 1 | 50 | μs
Α/μs
kHz | #### General data | T_{A} | Ambient operating temperature | - 10 + 70 | °C | |------------------|---|-----------|----| | T _s | Ambient storage temperature | - 25 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 85 | Ω | | m | Mass | 65 | g | | | Standards 2) | EN 50178 | | | | | | | #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. #### Special features - I_D = 0 .. ± 200 A - $\mathbf{K}_{N} = 1:2000$ # **Advantages** - Excellent accuracy - · Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - · Current overload capability. # **Applications** - AC variable speed drives and servo motor drives - · Static converters for DC motor drives - · Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes: 1) With a di/dt of 50 A/µs ²⁾ A list of corresponding tests is available. 991015/5 www.lem.com # **Dimensions LA 100-S/SP1** (in mm. 1 mm = 0.0394 inch) ## **Mechanical characteristics** General tolerance Fastening • Primary through-hole • Connection of secondary ± 0.3 mm 2 holes \varnothing 3.2 mm 16 x 10 mm Molex 5045-04/AG ## Remarks - I_s is positive when I_s flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device. - To measure nominal currents of less than 100 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns < 100 At). LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.