

Vishay Semiconductors

Optocoupler, Phototriac Output, 250 V V_{DRM}

DESCRIPTION

The K3010P/K3010PG series consists of a photo-transistor optically coupled to a gallium arsenide infrared-emitting diode in a 6-pin plastic dual inline package

VDE STANDARDS

These couplers perform safety functions according to the following equipment standards:

 DIN EN 60747-5-2 (VDE 0884)/DIN EN 60747-5-5 pending

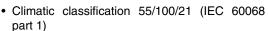
Optocoupler for electrical safety requirements

• IEC 60950/EN 60950

Office machines (applied for reinforced isolation for mains voltage \leq 400 V_{RMS})

VDE 0804

Telecommunication apparatus and data processing


• IEC 60065

Safety for mains-operated electronic and related household apparatus

FEATURES

- Isolation materials according to UL 94-VO
- Pollution degree 2 (DIN/VDE 0110 resp. IEC 60664)

- Special construction: therefore, extra low coupling capacity of typical 0.2 pF, high common mode rejection
- IFT offered in 3 groups
- Rated impulse voltage (transient overvoltage) $V_{IOTM} = 6 \text{ kV peak}$
- Isolation test voltage (partial discharge test) V_{pd} = 1.6 kV
- Creepage current resistance according to VDE 0303/ IEC 60112 comparative tracking index: CTI = 275
- Thickness through insulation ≥ 0.75 mm
- · Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

- Monitors
- · Air conditioners
- · Line switches
- Solid state relay
- Microwave
- Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):
 - for appl. class I IV at mains voltage ≤ 300 V
 - for appl. class I III at mains voltage $\leq 600~V$ according to DIN EN 60747-5-2 (VDE 0884)/ DIN EN 60747-5-5 pending.

AGENCY APPROVALS

- UL1577, file no. E76222 system code C, double protection
- BSI: BS EN 41003, BS EN 60065 (BS 415), BS EN 60950 (BS 7002), certificate number 7081 and 7402
- DIN EN 60747-5-2 (VDE 0884)/DIN EN 60747-5-5 pending
- FIMKO (SETI): EN 60950, certificate no. 12398

K3010P/K3010PG Series

Vishay Semiconductors

Optocoupler, Phototriac Output, 250 V V_{DRM}

ORDER INFORMATION					
PART	REMARKS				
K3010P	15 mA, I _{FT} , V _{DRM} = 250 V, DIP-6				
K3011P	10 mA, I _{FT} , V _{DRM} = 250 V, DIP-6				
K3012P	5 mA, I _{FT} , V _{DRM} = 250 V, DIP-6				
K3010PG	15 mA, I _{FT,} V _{DRM} = 250 V, DIP-6 400 mil				
K3011PG	10 mA, I _{FT,} V _{DRM} = 250 V, DIP-6 400 mil				
K3012PG	5 mA, I _{FT,} V _{DRM} = 250 V, DIP-6 400 mil				

Note

For additional information on the available options refer to option information.

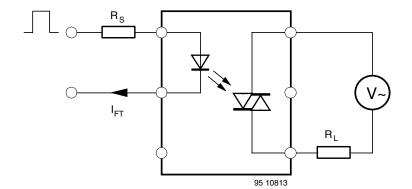
G = leadform 10.16 mm; G is not marked on the body.

ABSOLUTE MAXIMUM RATINGS (1)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
Reverse voltage		V _R	5	V			
Forward current		I _F	80	mA			
Forward surge current	t _P ≤ 10 μs	I _{FSM}	3	Α			
Power dissipation		P _{diss}	100	mW			
Junction temperature		T _j	100	°C			
ОUТРUТ							
Off state output terminal voltage		V_{DRM}	250	V			
On state RMS current		I _{TRM}	100	mA			
Peak surge current, non-repetitive	t _p ≤ 10 ms	I _{TMS}	1.5	Α			
Power dissipation		P _{diss}	300	mW			
Junction temperature		Tj	100	°C			
COUPLER							
Isolation test voltage (RMS)	t = 1 min	V _{ISO} (2)	3750	V _{RMS}			
Total power dissipation		P _{tot}	350	mW			
Ambient temperature range		T _{amb}	- 40 to + 85	°C			
Storage temperature range		T _{stg}	- 55 to + 100	°C			
Soldering temperature	2 mm from case, t ≤ 10 s	T _{sld}	260	°C			

Note

⁽¹⁾ T_{amb} = 25 °C, unless otherwise specified.
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽²⁾ Related to standard climate 23/50 DIN 50014.


Optocoupler, Phototriac Output, 250 V V_{DRM}

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (1)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	$I_F = 50 \text{ mA}$		V _F		1.25	1.6	٧
Junction capacitance	V _R = 0, f = 1 MHz		C _j		50		pF
OUTPUT							
Forward peak off-state voltage (repetitive)	I _{RDM} = 100 nA		V _{DRM} ⁽²⁾	250			V
Peak on-state voltage	I _{TM} = 100 mA		V _{TM}		1.5	3	V
Critical rate of rise of off-state voltage	$I_{FT} = 0$, $I_{FT} = 30$ mA,		dV/d _{tcr}		10		nA
			dV/d _{tcrq}	0.1	0.2		nA
COUPLER (3)							
Collector emitter saturation voltage	$V_S = 3 \text{ V}, R_L = 150 \Omega$	K3010P	I _{FT}		8	15	mA
		K3010PG	I _{FT}		8	15	mA
		K3011P	I _{FT}		5	10	mA
		K3011PG	I _{FT}		5	10	mA
		K3012P	I _{FT}		2	5	mA
		K3012PG	I _{FT}		2	5	mA
Holding current	I_F = 10 mA, V_S \geq 3 V		I _H		100		μΑ

Note

- (1) T_{amb} = 25 °C, unless otherwise specified. Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.
- (2) Test voltage must be applied within dV/dt ratings.
- (3) I_{FT} is defined as a minimum trigger current.

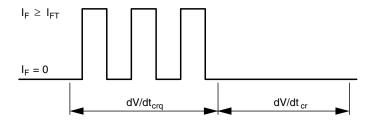

Test condition: dV/dt_{cr} $V_{S} = 2/3 \ V_{DRM}$ (Sine wave) $R_{L} = 33 \ k$ dV/dt_{crq} $V_{eff} = 30 \ V$ (Sine wave) $R_{I} = 2 \ k$

Fig. 1 - Test Circuit for dV/dt_{cr} and dV/dt_{crq}

Vishay Semiconductors

Optocoupler, Phototriac Output, 250 V V_{DRM}

 dV/dt_{cr}

Highest value of the "rate of rise of off-state voltage" which does not cause any switching from the

off-state to the on-state

dV/dt_{crq} Highest value of the "rate of rise os communicating voltage" which does not switch on the device again, after the voltage has decreased to zero and the trigger current is switched from I_{FT} to zero

95 10814

Fig. 2

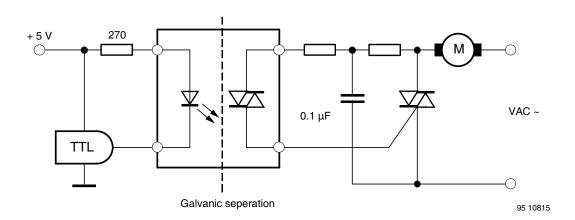


Fig. 3 - Motor Control Circuit

MAXIMUM SAFETY RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Forward current		I _{S, INPUT}			130	mA	
OUTPUT							
Power dissipation		P _s , _{OUTPUT}			600	mW	
COUPLER							
Rated transient voltage		V_{IOTM}			6	kV	
Safety temperature		T _{si}			150	°C	
Isolation test voltage		V _{IORM}			848	V	
		V _{IORM}			600	V_{RMS}	

Note

According to DIN EN 60747-5-2 (VDE 0884)/ DIN EN 60747-5-5 pending (see figure 4). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Optocoupler, Phototriac Output, 250 V V_{DRM}

Vishay Semiconductors

INSULATION RATED PARAMETERS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	1.6			kV
		V_{IOTM}	6			kV
Partial discharge test voltage - lot test (sample test)	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$ (see figure 5)	V_{pd}	1.3			kV
Insulation resistance	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω
	$V_{IO} = 500 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹			Ω

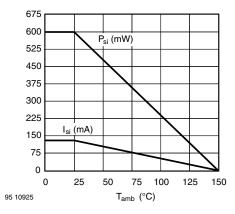


Fig. 4 - Derating Diagram

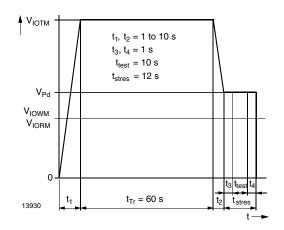


Fig. 5 - Test Pulse Diagram for Sample Test according to DIN EN 60747-5-2 (VDE 0884)/DIN EN 60747-; IEC60747

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

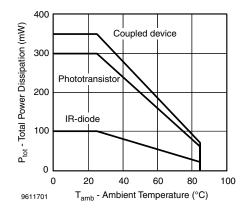


Fig. 6 - Total Power Dissipation vs. Ambient Temperature

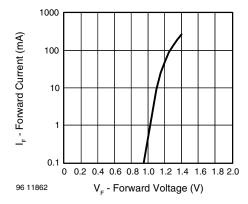


Fig. 7 - Forward Current vs. Forward Voltage

Vishay Semiconductors

Optocoupler, Phototriac Output, 250 V V_{DRM}

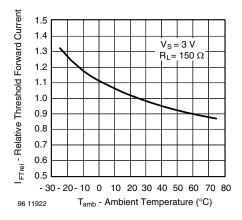


Fig. 8 - Relative Threshold Forward Current vs. Ambient Temperature

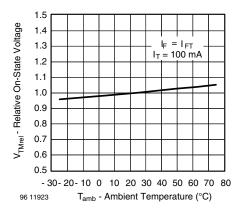


Fig. 9 - Relative On-State vs. Ambient Temperature

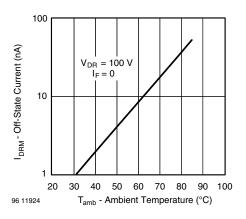
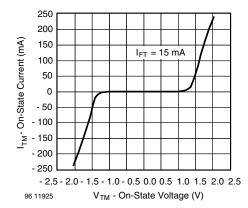
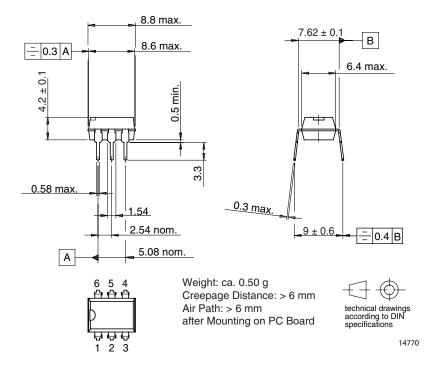
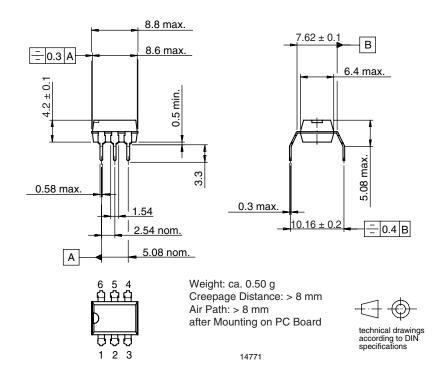


Fig. 10 - Off-State Current vs. Ambient Temperature




Fig. 11 - Collector Current vs. Forward Current


Optocoupler, Phototriac Output, 250 V V_{DBM}

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

PACKAGE DIMENSIONS in millimeters

K3010P/K3010PG Series

Vishay Semiconductors

Optocoupler, Phototriac Output, 250 V V_{DBM}

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
- Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

www.vishay.com

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1