LH1594/LH1595

DESCRIPTION

The LH1594/LH1595 are LCD drivers with a built-in character ROM suitable for driving small scale dotmatrix LCD panels, and which are capable of being directly connected to the bus line of a microcomputer. The 8-bit parallel or serial data transferred from a microcomputer is used to generate LCD drive signals for displaying characters. Incorporating a character ROM which has font characters configured in the format of 5 x 8 dots and a character RAM which allows the user to define characters, the LH1594/LH1595 provide a higher freedom of display. Since the LH1594/LH1595 have 80 output pins for a segment drive circuit and 17 output pins for a common drive circuit in a single chip, a display system for 16 characters x 2 lines can be implemented easily. The LH1594/LH1595 enable an LCD system for battery-operated, handcarrying information equipment by securing lower power consumption and wider operating voltage range.

FEATURES

• Built-in CGROM : 240 characters

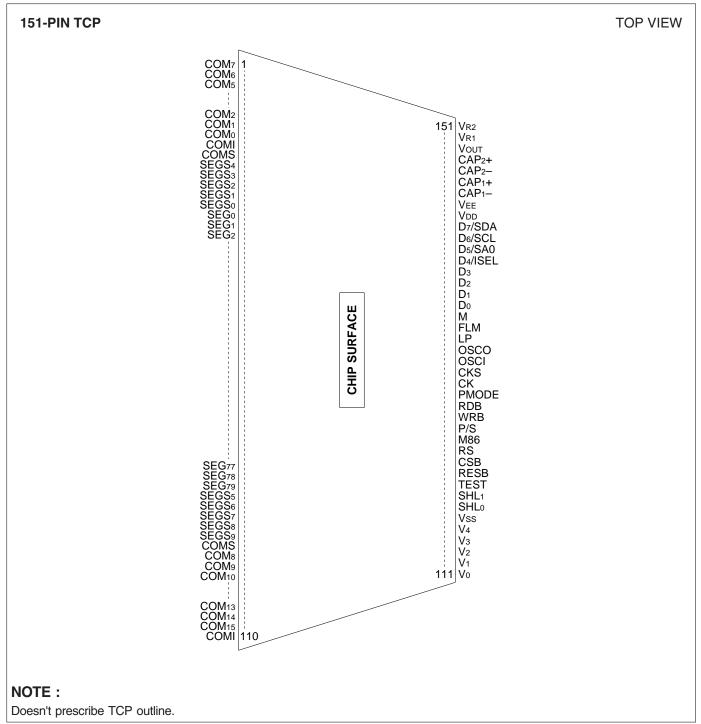
(5 x 8 x 240 = 9 600 bits)

Built-in CGRAM : 8 characters

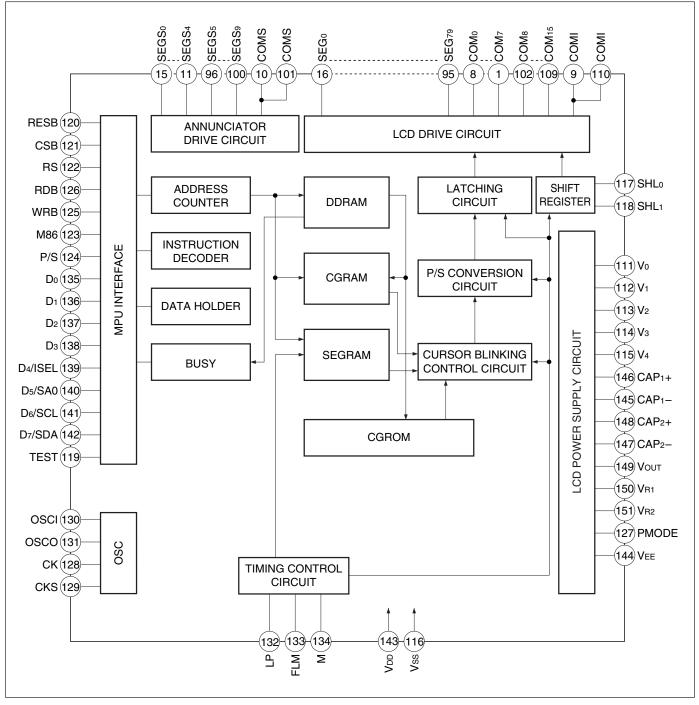
(5 x 8 x 8 = 320 bits)

• Built-in SEGRAM : 80 segments

```
(16 \times 7 = 112 \text{ bits})
```


- Built-in display data RAM : 32 characters (32 x 8 = 256 bits)
- Format of font character : 5 x 8 dots including 1 dot which also serves to display a cursor
- General 8-bit MPU interface : Possible to directly connect 80-family or 68-family MPU to bus line
- Possible to make serial interface (I²C BUS* format is for LH1594)
- Ratio of display duty cycle : 1/8, 1/9, 1/16 or 1/17 (selectable by command)

80-Segment and 17-Common Outputs LCD Driver IC with A Built-in CGROM


- Abundant command functions
 - Display of 2 lines by 16 characters
 - Display ON/OFF
 - Normal/reverse display control
 - Busy flag readout
 - Cursor display
 - Blinking : per character
 - Display double fonts lengthwise
 - Power saving mode
- LCD drive power circuit
 - Built-in booster circuit : Two or three times voltage boost is possible
 - Built-in voltage converter : Generates LCD drive voltages (V0, V1, V2, V3 and V4) based on the boosted voltage
 - Built-in power bias ratio :
 1/4 or 1/5 bias (selectable by command)
 - Built-in electronic volume : Controllable in 16 steps
 - Supply voltages
 Logic system : +2.2 to +5.5 V
 - LCD drive system : +4.0 to +11.0 V
- Operating temperature : –30 to +85 $^\circ\text{C}$
- Package : 151-pin TCP (Tape Carrier Package)
- * Purchase of I²C components of Sharp Corporation, or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

PIN CONNECTIONS

BLOCK DIAGRAM

1. PIN DESCRIPTION

1.1. Power Supply Pins

SYMBOL	I/O	DESCRIPTION						
Vdd	Power supply	ower supply pin for logic, connected to +2.2 to +5.5 V.						
Vss	Power supply	Ground pin, connected to 0 V.						
		Bias power supply pins for LCD drive voltage.						
		• When using an external power supply, convert impedance by using resistance-						
		division of LCD drive power supply or operational amplifier before adding voltage to						
Vo		the pins.						
V1		When using the external power supply, maintain the following power supply						
V2	Power supply	conditions.						
V3		VSS < V4 < V3 < V2 < V1 < V0						
V4		• When the power supply circuit is ON, LCD drive voltage of Vo to V4 are generated						
		by the internal booster circuit and voltage converter.						
		• When using the internal power supply, be sure to connect each capacitor between						
		Vo to V4 and Vss.						

1.2. LCD Power Supply Circuit Pins

SYMBOL	I/O	DESCRIPTION
CAP1+	0	Connecting pin for the internal booster's capacitor + side.
CAP1+	0	The capacitor is connected between CAP1- and CAP1+.
CAP1-	0	Connecting pin for the internal booster's capacitor - side.
CAFI-	0	The capacitor is connected between CAP1+ and CAP1
CAP2+	0	Connecting pin for the internal booster's capacitor + side.
CAP2+	0	The capacitor is connected between CAP2- and CAP2+.
CAP2-	о	Connecting pin for the internal booster's capacitor - side.
CAF2-		The capacitor is connected between CAP2+ and CAP2
VEE	Devuer Oversky	Voltage supply pin for generating boosted voltage in the internal booster circuit.
VEE	Power Supply	Usually the same voltage level as VDD.
Vout	Power Supply/	Output pin of boosted voltage in the internal booster circuit.
V001	0	The capacitor must be connected between Vss and Vout.
VR1		Used as input pins for voltage converter.
VR2	I	Voltage must be input between the VEE and VOUT pins by voltage divided by resistors.
		Pin for controlling LCD power supply.
PMODE	I	A combination of PMODE pin and ON/OFF command of power supply (PON)
		enables selection of a specific drive operation.

1.3. System Bus Pins

SYMBOL	I/O	DESCRIPTION
		• When set to parallel interface mode (P/S = "H").
		Used as an 8-bit bi-directional data bus (D7 to D0), which is connected to 8-bit MPU
		data bus.
		• When set to serial interface mode (P/S="L").
		Used as serial interface signals (SDA, SCL, SA0, ISEL).
		[SDA]
Do		LH1594 : I/O pin for the I ² C BUS data line when serial interface is selected.
D0 D1		Must be connected to a positive power supply via pull-up resistor.
		LH1595 : Serial-data input pin at time of serial interface selection.
D2 D3		[SCL]
D3 D4/ISEL	I/O	LH1594 : Input pin for the I ² C BUS clock signal when serial interface is selected.
D4/ISEL D5/SA0		Must be connected to a positive power supply via pull-up resistor.
D5/SAU D6/SCL		LH1595 : Serial clock pin at time of serial interface selection.
Do/SCL D7/SDA		[SA0]
D//SDA		LH1594 : Used for LSB bit of slave address for I ² C BUS (7 bits width).
		Must be fixed to "H" or "L".
		LH1595 : Must be set to "L". If set to "H", LH1595 operation is not warranty.
		[ISEL]
		LH1594 : Used to identify I ² C BUS. When using I ² C BUS, fix to "H".
		If ISEL is set to "L", LH1594 operation is not warranty.
		LH1595 : Must be set to "L". If set to "H", LH1595 operation is not warranty.
CSB	1	Chip selection input pin that decoded address bus signal is input.
		Distinguishes display RAM data/commands of D7 to D0 data transferred from MPU.
RS	1	1 : The data of D7 to D0 show the display RAM data.
		0 : The data of D7 to D0 show the command data.
RESB	I	Initialized by setting to "L". The reset signals of the system are normally input. Reset
	•	operation is performed in accordance with RESB signal level.
		In connecting to 80-family MPU :
		This RDB is a pin for connecting the RDB signal of 80-family MPU. When the
RDB		signal enters in the "L" state, the data bus of this IC turns to the "output" state.
(E)		In connecting to 68-family MPU :
		This RDB becomes a pin for connecting the enable clock signal of 68-family MPU.
		When the signal enters in the "H" state, the data bus of this IC turns to the "active"
		state.

SYMBOL	I/O	DESCRIPTION
		In connecting to 80-family MPU :
		This WRB is a pin for connecting the WRB signal of 80-family MPU, and when
		WRB signal is "L", this pin is "active".
WBB		The data bus signal is input at the rising edge of WRB signal.
(R/W)	I	In connecting to 68-family MPU :
		This WRB becomes a pin for connecting the R/W signal of controlling read/write of
		68-family MPU.
		R/W = "H" : Read
		R/W = "L" : Write
		MPU interface-type shift pin.
M86	I	M86 = "H" : 68-family interface
WIGO		M86 = "L" : 80-family interface
		Fixed to either "H" or "L".
		Used to shift between parallel interface and serial interface.
P/S	I	P/S = "H" for parallel interface. Fix SDA and SCL pins to either "H" or "L".
1/3		P/S = "L" for serial interface. Fix D3 to D0 pins to High-Z, RDB and WRB pins to
		either "H" or "L".
TEST	I	For testing. Fix to "L".

1.4. LCD Drive Circuit Signals

SYMBOL	I/O	DESCRIPTION				
LP	0	The latching signal of display data to count up the display line counter at the rising,				
	0	and to output the LCD drive signals at the falling.				
		Output pin for LCD display synchronous signals (first line marker).				
FLM	0	When FLM pin is set to "H", the display starting line address is preset in the display				
		line counter.				
М	0	Output pin for alternating signals of LCD drive output.				
		Segment output pins for LCD drive.				
	Ο	According to the data of the display data,				
		non-lighted at "0", lighted at "1" (Normal mode)				
		non-lighted at "1", lighted at "0" (Reverse mode)				
		and, by a combination of M signal and display data, one signal level among Vo, V2,				
		V3, and Vss is selected.				
SEG0-SEG79		M Signal				
		Display Data				
		Normal ModeV2V0V3VssReverse ModeV0V2VssV3				

SYMBOL	I/O	DESCRIPTION					
COM0-COM15	Ο	Common output pins for LCD drive. By a combination of the scanning data and M signal, one signal level among Vo, V1, V4 and Vss is selected. Data M H H V1 H V1 H L V1 H L V2 V3 V4 V4					
СОМІ	Ο	Common output pin for marker display.When executing duty + 1 (PLUS) command, it functions as a common output pin.Having two output pins for COMI, they output same level. It is able to select outputpin for COMI when wiring pattern.Duty + 1 ONDuty + 1 OFFCOMI stateCOM16 (when displaying 2 lines), COM8 (when displaying 1 line)					
COMS	0	Common drive output pin for static LCD drive (for annunciator display). Having two output pins for COMS, they output same level. It is able to select output pin for COMS when wiring pattern. When DA = "0", outputs Vss level.					
SEGS0-SEGS9	0	Segment drive output pin for static LCD drive (for annunciator display). One level is selected from VDD and Vss levels depending on the combination of COMS signal and display data. When DA = "0", outputs Vss level.					
SHL₀ SHL1	I	Input pin to control the transfer direction of the segment and common signal output data. SHL0 = "0" : Segment data display direction is SEG0 to SEG79. SHL0 = "1" : Segment data display direction is SEG79 to SEG0. SHL1 = "0" : Common data display direction is COM0 to COM15. SHL1 = "1" : Common data display direction is COM15 to COM0.					

1.5. Pins for Oscillation Circuit

SYMBOL	I/O	DESCRIPTION			
OSCI	I	Foodbook registence connecting his for the internal coellation circuit			
OSCO	0	Feedback-resistance connecting pin for the internal oscillation circuit.			
	Input pin of display master clock.				
СК		When using CK pin as an input of the master clock, fix OSCI pin to Vss.			
	I	When using the internal oscillation circuit as the display master clock, fix CK pin to			
	Vss.				
		Selection input pin of display master clock.			
CKS	I	CKS = "H" : Input the external clock to CK pin.			
		CKS = "L" : The internal oscillation circuit by using OSCI and OSCO pins is used.			

* Master clock : Clock for oscillation circuit or external clock.

1.6. Input/Output Circuits

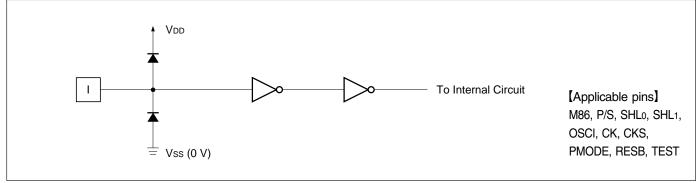


Fig. 1 Input Circuit (1)

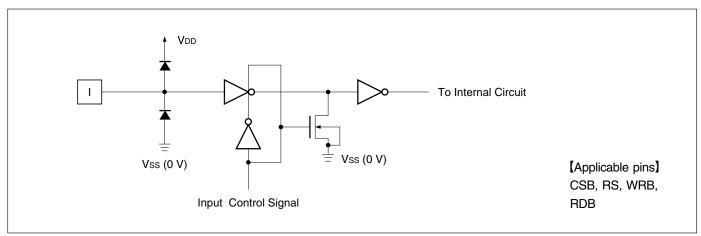


Fig. 2 Input Circuit (2)

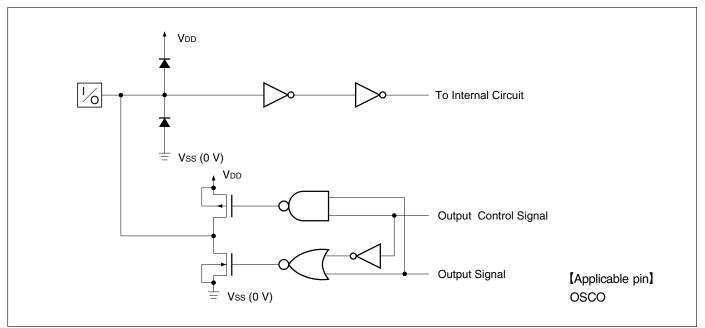


Fig. 3 Input/Output Circuit (1)

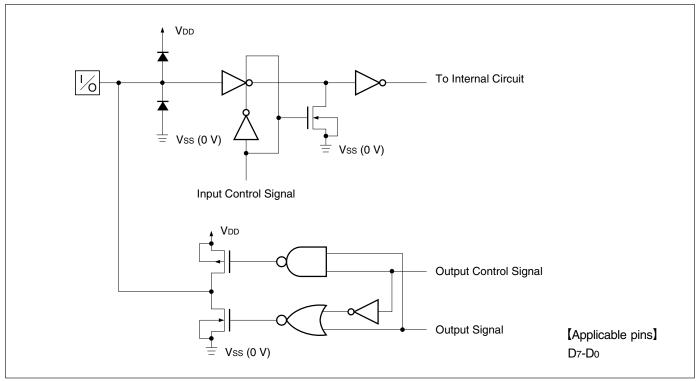


Fig. 4 Input/Output Circuit (2)

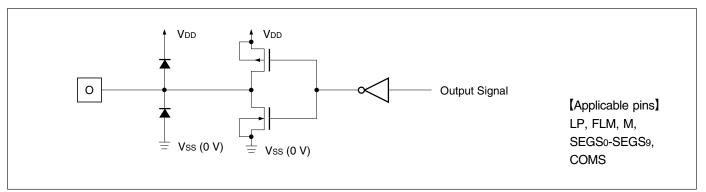


Fig. 5 Output Circuit

2. FUNCTIONAL DESCRIPTION

2.1. MPU Interface

2.1.1. INTERFACE TYPE SELECTION

The LH1594/LH1595 transfer data through 8-bit parallel I/O (D7 to D0) or serial data input (SDA, SCL).

The selection between parallel interface and serial interface is made by setting the state of P/S pin to "H" or "L".

P/S	I/F TYPE	CSB	RS	RDB	WRB	M86	SDA	SCL	DATA BUS
Н	Parallel	CSB	RS	RDB	WRB	M86	_	-	D7 to D0
L	Serial	– (LH1594) CSB (LH1595)	```'	-	_	_	SDA	SCL	-

2.1.2. PARALLEL INPUT

The LH1594/LH1595 can transfer data in parallel by directly connecting 8-bit MPU to the data bus when parallel interface is selected with P/S pin.

As an 8-bit MPU, either 80-family MPU interface or 68-family MPU interface is selected with M86 pin.

M86	MPU TYPE	CSB	RS	RDB	WRB	DATA
Н	68-family MPU	CSB	RS	Е	R/W	D7 to Do
L	80-family MPU	CSB	RS	RDB	WRB	D7 to Do

2.1.3. DATA IDENTIFICATION

The LH1594/LH1595 can identify the data of 8-bit data bus by combinations of RS, RDB and WRB signals.

RS	68-FAMILY	80-FA	MILY	FUNCTION
no	R/W	RDB	WRB	FUNCTION
0	1	0	1	Reads out busy flags
0	0	1	0	Writes to commands
1	1	0	1	Reads from data RAM
1	0	1	0	Writes to data RAM

2.1.4. SERIAL INTERFACE [FOR LH1594]

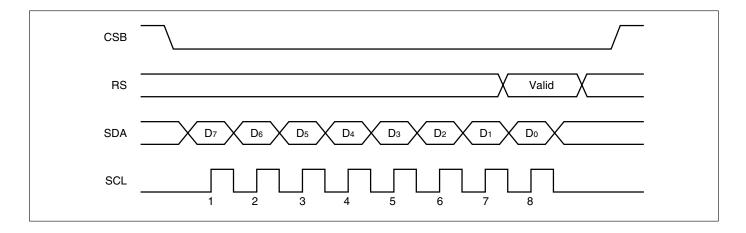
The serial interface for the LH1594 is I^2C BUS format. I^2C BUS is for bi-directional two-line communication between different ICs or other modules.

LH1594 always operates as a slave device, so sending data of start and stop is controlled by start/stop bits which are sent by master device.

[FOR LH1595]

The serial interface of LH1595 can accept inputs of SDA and SCL in the chip selection state (CSB = "L"). When not in the chip selection state, the internal shift register and counter are reset to their initial condition.

Serial data SDA are input sequentially in order of D7 to D0 at the rising edge of serial clock (SCL) and are converted into 8-bit parallel data (by serial to parallel conversion) at the rising edge of the 8th serial clock, being processed in accordance with the data.


The identification whether the serial data inputs (SDA) are display data or commands is judged by input to RS pin.

RS = "H" : Display data

RS = "L" : Commands

After completing 8-bit data transferring, or when making no access, be sure to set serial clock input (SCL) to "L".

Protection of SDA and SCL signals against external noise should be taken in actual wiring. To prevent the successive recognition errors of transferring data from external noise, release the chip selection state (CSB = "H") at every completion of 8-bit data transferring.

2.2. Busy Flag

When the busy flag is "1", this indicates that the LH1594/LH1595 are internally operating. In this state, the LH1594/LH1595 do not accept the next instruction. As shown in the command function table, the busy flag is output to the data bus D7 when RS is "0" or R/W is "1" (for the 68-family interface), and when RS is "0" or RDB is "0" (for the 80-family interface). The busy flag is generated only when the display clear command or the ACL command is executed. It must be confirmed that the busy flag is "0" before the next instruction can be executed.

2.3. Address Counter (AC)

The address counter (AC) is used to address the DDRAM, CGRAM, or SEGRAM. When the addressing instruction is written into the AC, the address information is transferred to the AC. Simultaneously, the instruction also determines which RAM is to be selected among the DDRAM, CGRAM, and SEGRAM. After data is written into (read out from) the DDRAM, CGRAM, or SEGRAM, the AC is automatically counted up or down by one. As shown in the command function table, the AC outputs data to the data buses D6 to Do when RS is "0" and R/W is "1" (for the 68-family interface).

2.4. Display Data RAM (DDRAM)

The DDRAM stores display data presented with 8bit character codes. Its capacity is 32 characters in a format of 8 bits.

2.5. Character Generator ROM (CGROM)

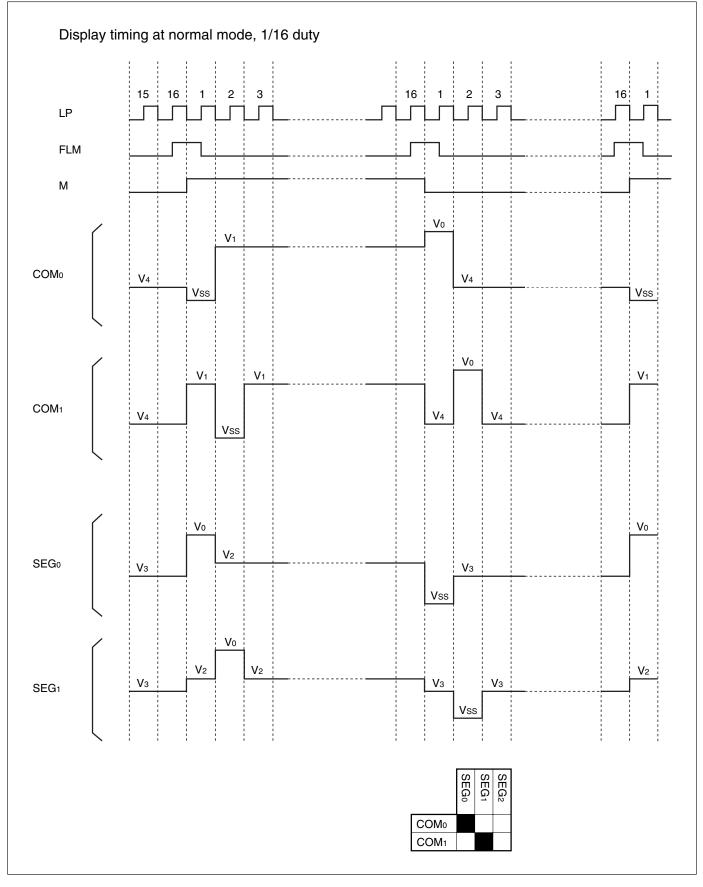
The CGROM generates 240 different character patterns in a format of 5 x 8 dots from 8-bit character codes.

2.6. Character Generator RAM (CGRAM)

The CGRAM allows user-written programs to freely overwrite characters. Eight different types of characters can be written in a format of 5 x 8 dots.

2.7. Segment RAM (SEGRAM)

The SEGRAM allows user-written programs to freely control icons and marks. When the COMI outputs the selection signal, the data stored in the SEGRAM is read out to display 80 segments.


2.8. Timing Generation Circuit

The timing generation circuit generates the timing signals to operate the internal circuits, including the DDRAM, CGROM, CGRAM, and SEGRAM, as well as those for segment and common drive outputs. Readout of the display data to the LCD drive circuit is completely independent of MPU. Therefore, a MPU that has no relationship the read-out operation of the display data can access it.

2.9. Cursor Blinking Control Circuit

This circuit generates the cursor, the blinking cursor, or the reverse-display cursor. The cursor or the blinking cursor appears in the digit that corresponds to the address in the DDRAM which is specified in the address counter.

2.10. Output Timing of LCD Driver

2.11. LCD Drive Circuit

This drive circuit generates 4 levels of LCD drive voltage. The circuit has 80 segment outputs and 17 common outputs and outputs combined display data and M signal. Character data is transferred by 80 bits from the CGROM or the CGRAM to the segment drive circuit.

One of the common outputs, COMI is for marker display only. A common drive circuit that has a shift register sequentially outputs common scan signals.

2.12. Oscillation Circuit

The frequency of this CR oscillator is controlled by the feedback resistor RF.

The output from this oscillator is used as the timing signal source of the display and the boosting clock to the booster circuit.

If external clock is used, maintain OSCI pin at Vss and OSCO pin open (NC), and feed the clock to CK pin.

The duty cycle of the external clock must be 50%.

The CKS pin is used to select either internal oscillation circuit or external clock.

CKS	OSCILLATION CIRCUIT	EXTERNAL CLOCK
L	Enabled	Disabled
Н	Disabled	Enabled

2.13. Annunciator Circuit

This is the drive circuit which generates 2-value levels for static LCD drive. This circuit provides displaying annunciators for icons or marks. It consists of common drivers (COMS x 2) and 10 segment drivers (SEGS0 to SEGS9). One level is selected from VDD and Vss levels for static LCD drive. When this circuit is not displaying annunciator, it outputs Vss level.

2.14. Power Supply Circuit

This circuit supplies voltages necessary to drive an LCD. The circuit consists of booster circuit and voltage converter.

Boosted voltage from the booster circuit is fed to

the voltage converter which converts this high input voltage into V₀, V₁, V₂, V₃ and V₄ which are used to drive the LCD.

This internal power supply should not be used to drive a large LCD panel containing many pixels or a large LCD panel that has large capacity consisting of more than one chip. Otherwise, display quality will degrade considerably. Instead, use an external power supply.

This internal power supply is controlled by the power supply circuit ON/OFF command (PON).

When the internal power supply is turned off, the booster circuit and voltage converter are also turned off.

When using the external power supply, turn off the internal power supply, disconnect pins CAP1+, CAP1-, CAP2+, CAP2-, VOUT, VEE, VR1 and VR2, and keep PMODE pin at Vss. Then, feed external LCD drive voltages to pins V0, V1, V2, V3 and V4.

This circuit can be changed by the state of PMODE pin.

	PMODE	BOOSTER	VOLTAGE	EXTERNAL	NOTE	
PUN		CIRCUIT	CONVERTER	VOLTAGE INPUT	NOTE	
0	0	Disabled	Disabled	V0, V1, V2, V3, V4	1	
0	1	Disabled	Disabled	V0, V1, V2, V3, V4	1	
1	0	Enabled	Enabled	_		
1	1	Disabled	Enabled	Vout, Vr1, Vr2	2	

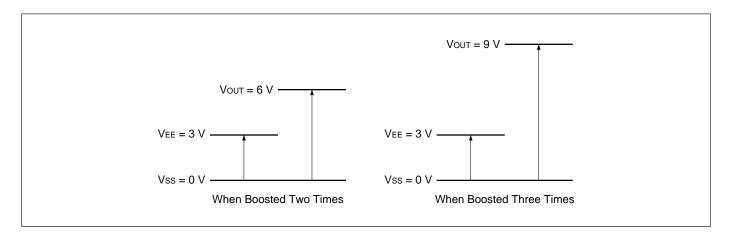
NOTES :

 Because the booster circuit and voltage converter are not functioning, disconnect pins CAP1+, CAP1-, CAP2+, CAP2-, VOUT, VEE, VR1, and VR2.

Apply external LCD drive voltages to corresponding pin.

 Because the booster circuit is not functioning, disconnect pins CAP1+, CAP1-, CAP2+, CAP2- and VEE.
 Derive the voltage source to be supplied to the voltage converter from Vout pin and then output LCD drive voltage to VR1, and VR2 pins. The voltage level at VR1 and VR2 pins must be VR2 ≤ VR1 ≤ Vout.

2.15. Booster Circuit


Placing capacitor C1 across CAP1+ and CAP1and across CAP2+ and CAP2- and across VOUT and Vss boosts the voltage coming from VEE and Vss three times and outputs the boosted voltage to VOUT pin.

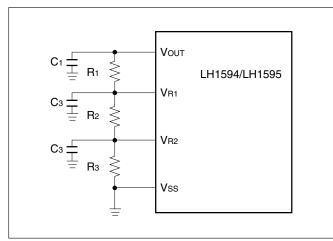
Placing C1 across CAP1+ and CAP1- and shorting together pins CAP1+ and CAP2+ limits the output on VOUT pin to two times the input voltage.

Since the booster circuit uses the clock derived

from the internal oscillation circuit or external clock as the boosting clock, the internal oscillation circuit must be enabled, or if external clock is selected, it must be fed to CK pin.

The output level at the VOUT pin does not exceed the recommended maximum operating voltage (11.0 V) when the voltage is boosted. If this value is exceeded, the operation of the LH1594/LH1595 are not covered by warranty.

2.16. Voltage Control Circuit


The boosted voltage at the VOUT pin is connected to the VR1 and VR2 pins and then the LCD drive voltages (V0, V1, V2, V3, and V4) are generated via the voltage converter circuit. The input level at the VR1 and VR2 must meet the electric potential condition of VR1 \geq VR2. The internal electronic volume divides the electric potential between the VR1 and VR2 into 16 segments.

Since the VR1 and VR2 pins have high input impedance, the input voltage levels at the VR1 and VR2 are determined by the resistance ratio of R1, R2, and R3. The current flowing between the VOUT and VSS pins is determined by the combined resistance of R1, R2, and R3.

Therefore, R1, R2, and R3 must be selected in accordance with the above current as well as the input voltage levels at the VR1 and VR2.

The boosted voltage at the VOUT pin originates from the voltage supplied at the VEE pin.

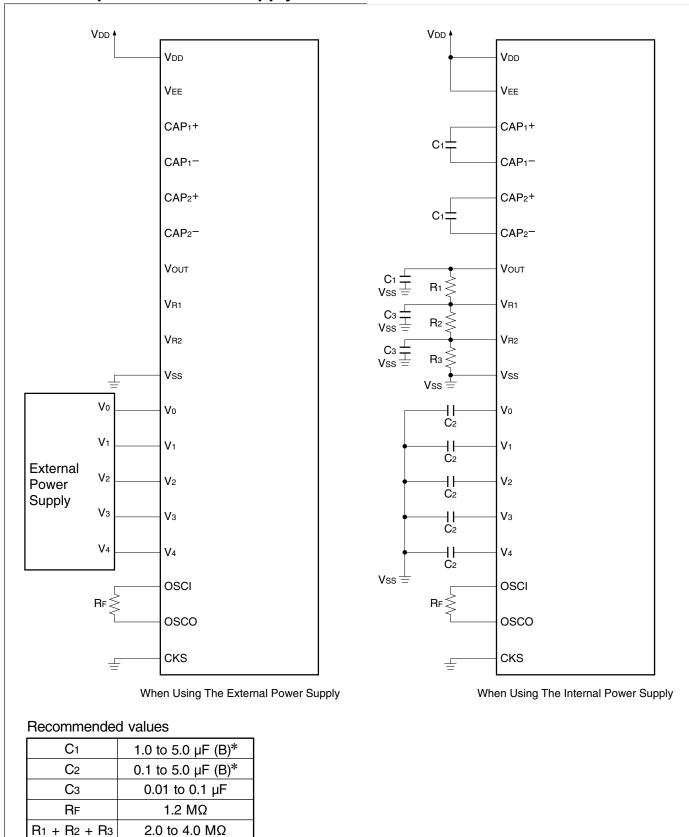
Thus, the DC path current generated with R1, R2, and R3 connected between the VOUT and Vss pins is supplied as current at the VEE pin. The electric current value, three times larger than the DC path current generated between the VOUT and Vss pins when the voltage is tripled, is added as supply current at the VEE pin (two times larger current is added for doubled voltage). Take sufficient care that the input levels at the VR1 and VR2 pins do not fluctuate with external noise (connect capacitor C3).

Example of Voltage Control Circuit

2.17. Electronic Volume

The voltage converter incorporates an electronic volume, which allows the LCD drive voltage level Vo to be controlled with a command and also allows the tone of LCD to be controlled.

If 4-bit data is stored in the register of the electronic volume, one level can be selected among 16 voltage values for the LCD drive voltage V₀.


The voltage control range of the electronic volume is determined by the input voltage levels at the VR1 and VR2. This means that the voltage range of (VR1 to VR2) is the controllable voltage range of the electronic volume. The electric potential relation between the VR1 and VR2 pins must be VR1 \geq VR2. The input voltage levels at the VR1 and VR2 pins must be selected in accordance with the voltage levels to be obtained with the electronic volume.

2.18. LCD Drive Voltage Generation Circuit

The voltage converter contains the voltage generation circuit. The LCD drive voltages other than Vo, that is, V1, V2, V3 and V4, are obtained by dividing Vo through a resistor network. The LCD drive voltages from LH1594/LH1595 are biased at 1/4 or 1/5.

When using the internal power supply, connect a stabilizing capacitor C₂ to each of pins V₀ to V₄.

The capacitance of C₂ should be determined while observing the LCD panel to be used. In this case, connect a capacitor C₃ to stabilize input voltage to VR1 and VR2. A value of C₃ can be defined selectively.

2.19. Example of Power Supply Circuit

* B characteristics must be used with C1 and C2.

2.20. Initialization

The LH1594/LH1595 are initialized by setting RESB pin to "L". Normally, RESB pin is initialized together with MPU by connecting to the reset pin of MPU. When power is ON, be sure to reset operation.

PARAMETER	PIN DESCRIPTION
Function	RE = 0 : Writes to expanded
	register disabled.
	BE = 0 : SEGRAM blink OFF
	DUB = 0 : Normal display mode
	(Displaying double
	fonts lengthwise OFF)
	BT = 0 : Blinking type is normal/
	reverse display.
Entry mode	I/D = 1 : Increments by one.
	S = 0 : No shift occurs.
Display mode	NL = 0 : Displays 2 lines.
Display control (1)	D = 0 : Display OFF
	C = 0 : Cursor OFF
	B = 0 : Blink OFF
Display control (2)	PLUS = 0 : 1/16 duty
	REV = 0 : Normal display
	ALON = 0 : Normal display
Power control	HALT = 0 : Power saving OFF
	PON = 0: Power supply circuit OFF
	ACL = 0 : ACL operation OFF
	BIAS : 1/5 bias
Register in electronic	(1, 1, 1, 1)
volume	
Annunciator control	DA = 0 : Annunciator display
	OFF
	I0 to $I9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
RAM data	DDRAM : Not determined.
	CGRAM : Not determined.
	SEGRAM : Not determined.

3. PRECAUTIONS

Precautions when connecting or disconnecting the power supply

This IC may be permanently damaged by a high current which may flow if voltage is supplied to the LCD drive power supply while the logic system power supply is floating. The details are as follows.

- ① When using an external power supply
- When connecting the power supply After connecting the logic system power supply, make reset operation and then apply external LCD drive voltages to corresponding pins. (Vo, V1, V2, V3, V4 or VOUT, VR1 and VR2)
- When disconnecting the power supply After executing HALT command, disconnect external LCD drive voltages and then disconnect the logic system power supply.
- 2 When using the internal power supply
- When connecting the power supply After connecting the logic system power supply, make reset operation and then execute PON command.
- When disconnecting the power supply After executing HALT command, disconnect the logic system power supply.

It is advisable to connect the serial resistor (50 to 100 Ω) or fuse to the LCD drive power VOUT or Vo of the system as a current limiter. Set up a suitable value of the resistor in consideration of the display grade.

4. COMMAND FUNCTION

Since the instructions for the LH1594/LH1595 are executed within execution cycle time, the MPU can be operated at a high speed without a waiting time.

The busy state check is only necessary when the display clear command or the ACL command is executed.

4.1. Command Function Table

INSTRUCTION		INSTRUCTION CODE								DESCRIPTION		
INSTRUCTION	RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do	DESCRIPTION	
RAM data write	0/1	1			١	NRITE	E DAT	4			Writes to data RAM.	
RAM data read	0/1	1				READ	DATA	Ą			Reads from data RAM.	
Display clear set	0/1	0	0	0	0	0	0	0	0	1	Specifies address 0 from DDRAM	
	0/1	0	0	0						•	in AC after clearing all display.	
Cursor home set	0/1	0	0	0	0	0	0	0	1	*	Allocates address 0 for DDRAM	
	0/1	0	0	0					'		in AC and resets shifted display.	
Entry mode set	0								I/D	s	Specifies cursor moving direction	
	•	0	0	0	0	0	0	1			and whether or not to shift display.	
Display mode set	1								*	NL	Sets display 2 lines or 1 line (NL).	
											Turns ON/OFF all display (D). Turns	
Display control (1) set	0							D	С	В	ON/OFF cursor (C). Specifies blinking	
		0	0	0	0	0	1				character indicated by cursor (B).	
		Ŭ	Ŭ	Ū							Specifies duty + 1 (PLUS).	
Display control (2) set	1							PLUS	REV	ALON	Displays data in reverse display (REV).	
											Turns ON all display (ALON).	
Cursor/display shift	0						S/C	R/L	*	*	Moves cursor and shifts display	
set	0						0,0		•••		without changing data in DDRAM.	
		0	0	0	0	1					Specifies HALT ON (HALT).	
Power control set	1	Ŭ	Ū	Ū			BIAS	HALT	PON	ACI	Turns ON power supply circuit (PON).	
											Specifies resetting (ACL).	
											Sets bias ratio (BIAS).	
											Enables writes to expanded register (RE).	
Function set	0/1	0	0	0	1	BE	DUB	RE	вт	*	Enables blinking for SEGRAM (BE).	
	0, 1	Ŭ	Ū	Ū							Enables display double font lengthwise (DUB).	
											Sets blinking character type (BT).	
CGRAM address set	0	0	0	1			AC	CG			Sets CGRAM address.	
SEGRAM address set	1				*	*			EG		Sets SEGRAM address.	
DDRAM address set	0	0	1	0	*			ADD			Sets DDRAM address.	
Electronic volume set	1		•		*	*			OL		Sets electronic volume.	
Annunciator control	0	0	1	1	15	l4	13	12	1	10	(, ,	
set	1	-	-	•	DA	*	19	18	17	16	Enables display annunciator (DA).	
Busy flag/address	0/1	0	BF	*			А	С			Reads out busy flag and data	
read		-						-			from AC.	

* mark means "Don't care".

4.2. Write Data to RAM

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0/1	1	D	D	D	D	D	D	D	D

Writes binary 8-bit data D7 to D0 to the CGRAM or DDRAM or SEGRAM.

The RAM is to be written into is determined by the previous specification of CGRAM or DDRAM or

4.3. Read Data to RAM

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0/1	1	D	D	D	D	D	D	D	D

Reads binary 8-bit data D7 to D0 from the CGRAM or DDRAM or SEGRAM.

The most recent set address command determines the RAM is to be read. After writing, the address

4.4. Display Clear Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0/1	0	0	0	0	0	0	0	0	1

Space code "20H" (for 32 characters) is written to all addresses in the DDRAM. The address counter specifies DDRAM address 0.

If the display is shifted, it is reset in place. This means that the display is cleared and the cursor or blinking cursor, if displayed, returns to the left end in the first line.

Set the I/D of the increment mode to "Increment". "S" will not change. When the clearing of the display starts, the busy flag is generated. Therefore, to execute an instruction after clearing the display, monitor the busy flag and then execute the next instruction after checking that the flag has been released; or allow a waiting period of 34 times the master clock frequency.

4.5. Cursor Home Register Set

RE	RS	D7	D6	D5	D4	D3	D2	D1	Do
0/1	0	0	0	0	0	0	0	1	*

* mark means "Don't care".

Specify DDRAM address 0 in the address counter. If the display is shifted, it is reset in place. The data in the DDRAM remains unchanged. The cursor or the blinking cursor, if displayed, returns to the left end in the first line.

 D2
 D1
 D0

 D
 D
 D

automatically increments or decrements by 1, in

SEGRAM address setting. After writing, the address

automatically increments or decrements by 1, in

accordance with the entry mode.

accordance with the entry mode.

4.6. Entry Mode Register Set

		U							
RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	0	0	0	0	0	1	I/D	S

When the extended register enable bit (RE) is "0", the following I/D, and S bits are accessed :

- I/D : When any character code is written into or read out from the DDRAM, the DDRAM address is shifted by +1 (I/D = 1) or -1 (I/D = 0). In case of +1, the cursor or the blinking cursor moves to the right. This is also applicable when any data is written into or read out from the CGRAM or SEGRAM.
- S : If S = 1, the entire display is shifted to either the left or right when any character code is written into the DDRAM. If I/D = 1, the entire display is

shifted to the left; or if I/D = 0, the entire display is shifted to the right. Therefore, if I/D = 1, the cursor looks stationary with only the display shifted. When any character code is read out from the DDRAM, the display is not shifted. If S =0, the display remains unshifted. When any data is written into or read out from the CGRAM or SEGRAM, the display also remains unshifted.

When duty + 1 command is ON (PLUS = 1), if S = 1 and any code is written into DDRAM, the line that COMI scans is also shifted, so that this command is allowed only when duty + 1 command is OFF (PLUS = 0) state.

4.7. Display Mode Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
1	0	0	0	0	0	0	1	*	NL

* mark means "Don't care".

When the extended register enable bit (RE) is "1", the following NL bit is accessed :

NL : This command selects the displaying lines.

NL = "0" : Displays 2 lines. Display duty ratio is 1/16.

NL = "1" : Displays 1 line. Display duty ratio is 1/8.

4.8. Display Control (1) Register Set

-		•							
RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	0	0	0	0	1	D	С	В

When the extended register enable bit (RE) is "0", the following D, C, and B bits are accessed :

- D : Turns ON the display if D = 1; or turns OFF the display if D = 0. Since the data in the DDRAM is retained, the display can be resumed by specifying D = 1.
- C : Displays the cursor if C = 1; or hides the cursor if C = 0. Even if the cursor is hidden, I/D and other features remain

4.9. Display Control (2) Register Set

unchanged when the display data is written. The cursor is shown with 5 dots in the 8th line.

B : Blinks the character in the cursor position if B = 1. This blinking turns ON/OFF all dots displayed in reverse. The blinking frequency is 300 ms when fosc = 55 kHz and displays 2 lines. This value varies in proportion to the inverse number of fosc.

_				/						
	RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
	1	0	0	0	0	0	1	PLUS	REV	ALON

When the extended register enable bit (RE) is "1", the PLUS, REV, and ALON bits are accessed. Once the specified values are stored in this register, they are retained even if the RE bit is set to "0".

- PLUS : Specifies "duty + 1". Toggles the display duty. The COMI pin functions as the COM8 (when displaying 1 line) or COM16 (when displaying 2 lines) for marker. When the COMI is scanned, the data in the SEGRAM is output as display data from the segment driver.
 - PLUS = "0" : Sets the display duty to 1/8 (when displaying 1 line) or 1/16 (when displaying 2 lines).
 - PLUS = "1" : Sets the display duty to 1/9 (when displaying 1 line) or 1/17 (when displaying 2 lines).

REV : Toggles between normal and reverse videos for display.

REV = "0" : Normal video

REV = "1" : Reverse video

ALON : Toggles between normal and fully lit-up displays regardless the data type in the DDRAM. The setting of this bit takes priority over that of REV. ALON = "0" : Normal display

ALON = "1" : Fully lit-up display

4.10. Cursor/Display Shift Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	0	0	0	1	S/C	R/L	*	*

* mark means "Don't care".

When the extended register enable bit (RE) is "0", the following S/C and R/L bits may be set.

The cursor position or the display is shifted to the left or right without writing the display data or reading it out. This may be used to modify or search the display. The cursor movement from the 1st to 2nd line occurs after the 16th digit in the 1st line. Note that all the lines are shifted simultaneously.

When duty + 1 command is ON (PLUS = 1), if S = 1 and any code is written into DDRAM, the line that COMI scans is also shifted, so that this command is allowed only when duty + 1 command is OFF (PLUS = 0) state.

S/C	R/L	ACTION
0	0	Shifts cursor to left (counts down the AC by one).
0	1	Shifts cursor to right (counts up the AC by one).
1	0	Shifts entire display to left. Cursor moves as display is shifted.
1	1	Shifts entire display to right. Cursor moves as display is shifted.

If only the display shift is made, the address counter (AC) remains unchanged.

4.11. Power Control Register Set

			-						
RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
1	0	0	0	0	1	BIAS	HALT	PON	ACL

BIAS : This command selects the displaying bias ratio. BIAS = "0" : 1/5 bias

BIAS = "1" : 1/4 bias

HALT : Turns ON/OFF the power saving mode. When the LH1594/LH1595 enter the power saving mode, the supply current can be reduced to nearly the standby current value.

HALT = "0" : Normal mode

HALT = "1" : Power saving mode

The internal state in the power saving mode is described below.

• The oscillation and power circuits are stopped.

- The LCD drive is disabled. The output from the segment and common drivers are made at the Vss level.
- The clock input at the CK pin is inhibited.
- PON : Turns ON/OFF the internal power supply circuit.
 - PON = "0" : Turns OFF the power supply circuit.
 - PON = "1" : Turns ON the power supply circuit.

The booster circuit and the voltage converter become active when the power supply circuit is turned on. The operating section in the circuits varies depending on the setting of the PMODE pin. See **Table in Section 2.14.** for details.

ACL : The internal circuit can be initialized.
ACL = "0" : Normal mode.
ACL = "1" : ACL operation is ON.
When the ACL command is turned on, the busy flag is generated. Therefore, to execute an instruction after ACL

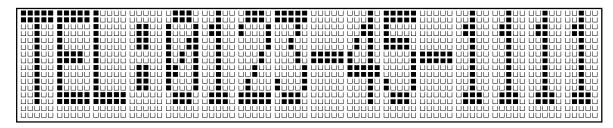
operation, monitor the busy flag and then execute the next instruction after checking that the flag has been released; or allow a waiting period of 2 times the master clock frequency.

4.12. Function Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0/1	0	0	0	1	BE	DUB	RE	BT	*
						•			

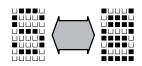
* mark means "Don't care".

- RE : This bit is the enable bit for extended register. If RE = "1", the extended function setting can be accessed. When setting instruction, it is necessary to follow the state of RE bit. (refer to "INSTRUCTION CODE" in section 4.1..) RE bit consists of register, once the specified value is stored in this register, it is retained the value.
- BE : When BE = "1", the information which is stored in the SEGRAM using its upper 2

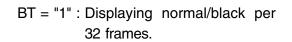

bits is used to allow for blinking the display data from the SEGRAM.

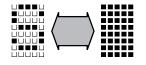
DUB : This bit is toggled the display double fonts lengthwise.

DUB = "0" : Displays normal mode.


DUB = "1" : Displays double fonts lengthwise. **NOTES :**

- Double fonts lengthwise can display only first line.
- Not using these setting, when displaying 1 line mode. (NL = 1)




Example of Display (DUB = "1")

- BT : This command selects the character blinking type.
 - BT = "0" : Displaying normal/reverse per 32 frames.

Example of Display (BT = "0")

Example of Display (BT = "1")

4.13. CGRAM Address Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	0	1	А	А	А	А	А	А

If the extended register enable bit (RE) is "0", CGRAM addresses may be specified.

In the above example, the address shown in binary

4.14. SEGRAM Address Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
1	0	0	1	*	*	А	А	А	А
. I									

* mark means "Don't care".

If the extended register enable bit (RE) is "1", SEGRAM addresses may be specified.

The SEGRAM address shown in binary number for

4.15. DDRAM Address Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	1	0	*	Α	А	А	А	Α

* mark means "Don't care".

If the extended register enable bit (RE) is "0", DDRAM addresses may be specified.

The DDRAM address shown in binary number for

"AAAAA" is allocated in the address counter. Subsequently data is written into or read from the MPU in reference to the DDRAM.

4.16. Electronic Volume Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
1	0	1	0	*	*	MSB	•••••		LSB

* mark means "Don't care".

The LCD drive voltage V₀ output from the internal power supply circuit can be controlled and the display tone on the LCD can be also controlled.

The LCD drive voltage V₀ takes one out of 16 voltage values by setting 4-bit data register.

If the electronic volume is not used, specify (1, 1, 1, 1) in the 4-bit data register. After the LH1594/LH1595 are reset, the 4-bit data register is automatically set to (1, 1, 1, 1).

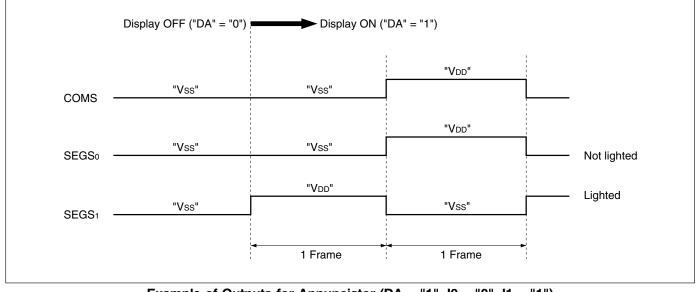
MSB		•••••	LSB	Vo
0	0	0	0	Smaller
1	1	1	1	Larger

Downloaded from <u>Elcodis.com</u> electronic components distributor

"AAAA" is allocated in the address counter. Subsequently data is written into or read from the MPU in reference to the SEGRAM.

number for "AAAAAA" is allocated in the address

counter. Subsequently data is written into or read


from the MPU in reference to the CGRAM.

4.17. Annunciator Control Register Set

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	4	4	l5	I 4	13	12	1	10
1	0	I	Ι	DA	*	19	18	I7	16

* mark means "Don't care".

- I0 to I9 : These bits are setting data for annunciator. Io to I9 correspond to SEGS0 to SEGS9 for static LCD drive outputs.
- DA : When DA = "1", output pin for static LCD drive (for annunciator display). One level is selected from VDD and Vss levels depending on the combination of COMS signal and display data (I0 to I9). When DA = "0", outputs Vss level.

Example of Outputs for Annunciator (DA = "1", I0 = "0", I1 = "1")

4.18. Busy Flag/Address Read

RE	RS	D7	D6	D5	D4	Dз	D2	D1	Do
0/1	0	BF	*	А	Α	A	A	A	А
 			"						

* mark means "Don't care".

"BF = 1" indicates that the LH1594/LH1595 are internally operating and the next instruction is not accepted until "BF = 0".

The busy flag is only generated when the display is cleared or the ACL command is executed. Therefore, any other instruction can be executed without monitoring the busy flag. Simultaneously, the address counter value presented in binary number for "AAAAAA" is read out. The address counter is used by the DDRAM, CGRAM, and SEGRAM. The data read out from the RAMs is determined by specifying a command before reading out.

4.19. Example of Instructions vs. Display

		-	I	NST	RUC	TION	1				
NO.	RS	D 7	D6	D 5	D 4	D3	D2	D1	D0	DISPLAY	ACTION
1	Pow	/er C	N								No display appears.
-											
2		ction									"0" is written to RE bit.
	0	0	0	1	*	*	0	0	*		
3		olay o									Display is cleared.
	0	0	0	0	0	0	0	0	1		
4	-			DFF (ol					Turns ON display and cursor. If display is
	0	0	0	0	0	1	1	1	0	-	cleared, display is filled with blank spaces.
5	Entr	y mo	ode s	set							Counts up address by one and moves
5	0	0	0	0	0	0	1	1	0	-	cursor to right when data is written to RAM.
6	DDF	RAM	data	ı writ	е					S_	Writes "S".
0	1	0	1	0	1	0	0	1	1	o_	Willes 3.
7					:						
1					:						
8	DDF	RAM	data	ı writ	е					SHARP_	Writes "P".
0	1	0	1	0	1	0	0	0	0		Willes T.
9	DDF	RAM	add	ress	set					SHARP	Sets DDRAM address so that cursor is
9	0	1	0	*	1	0	0	0	0	_	positioned at the top of 2nd line.
10	DDF	RAM	data	ı writ	е					SHARP	Writes "L".
10	1	0	1	0	0	1	1	0	0	L_	
11					:						
					:						
12	DDF	RAM	data	ı writ	е					SHARP	Writes "R".
12	1	0	1	0	1	0	0	1	0	LCDDRIVER_	
13					:						
10					:						
14	Cur	sor h	ome							SHARP	Resets both display and cursor in place
14	0	0	0	0	0	0	0	1	*	LCDDRIVER	(address 0).

* mark means "Don't care".

5. CONFIGURATION OF CGROM

Character codes vs. character patterns

Low	order	High order	

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
XXXX0000	CG RAM (1)															
XXXX0001	CG RAM (2)															
XXXX0010	CG RAM (3)															
XXXX0011	CG RAM (4)															
XXXX0100	CG RAM (5)															
XXXX0101	CG RAM (6)															
XXXX0110	CG RAM (7)															
XXXX0111	CG RAM (8)															
XXXX1000	CG RAM (1)															
XXXX1001	CG RAM (2)															
XXXX1010	CG RAM (3)															
XXXX1011	CG RAM (4)															
XXXX1100	CG RAM (5)															
XXXX1101	CG RAM (6)															
XXXX1110	CG RAM (7)															
XXXX1111	CG RAM (8)															

6. CONFIGURATION OF CGRAM

	С	HAF	ACT	ER	COD	E		0	CGR	AM A		RES	S			CG	RAN	I DA	TA		
D7	D6	D 5	D 4	D 3	D2	D1	D0	A 5	A 4	Аз	A 2	A 1	A 0	D 7	D6	D 5	D 4	D 3	D2	D1	D0
0	0	0	0	*	0	0	0	0	0	0	0	0	0	*	*	*	1	0	0	0	1
											0	0	1				1	0	0	0	1
											0	1	0				1	0	0	0	1
											0	1	1				0	1	0	1	0
											1	0	0				0	0	1	0	0
											1	0	1				0	0	1	0	0
			١	1					¥		1	1	0		V		0	0	1	0	0
				•					,		1	1	1		•		0	0	0	0	0
				:					:						:						
0	0	0	0	*	1	1	1	1	1	1	0	0	0	*	*	*	1	0	0	0	1
											0	0	1				1	0	0	0	1
											0	1	0				1	0	0	0	1
											0	1	1				1	1	1	1	1
											1	0	0				1	0	0	0	1
											1	0	1				1	0	0	0	1
									V		1	1	0		¥		1	0	0	0	1
				•					•						,		0	0	0	0	0

CGRAM addresses vs. character codes (DDRAM) and character patterns (CGRAM).

* mark means "Don't care".

Upper section : Character pattern 1 (Y display) Lower section : Character pattern 2 (H display)

NOTES:

- 1. Character code bits D₂ to D₀ correspond to CGRAM addresses A₅ to A₃ (3 bits : 8 types).
- CGRAM addresses A₂ to A₀ correspond to line positions of the character pattern (3 bits : 8 lines).
- The columns of the character pattern are laid out with bit 0 allocated to the right end. Therefore, the pattern of bits 4 to 0 is displayed.
- If the upper 4 bits (D7 to D4) of the character code are zeros, the CGRAM is selected. Since bit D3 is "Don't care", "00H" and "08H" are the same CGRAM address.
- 5. If the CGRAM data is "1", data is displayed; if "0", data isn't displayed.

7. CONFIGURATION OF SEGRAM

SEG	RAM	ADDR	ESS			SI	EGRA	M DA	ГА		
Аз	A 2	A 1	A0	D7	D6	D5	D4	Dз	D2	D1	Do
0	0	0	0	B1	Bo	*	S0	S1	S2	S3	S4
0	0	0	1	B1	Bo	*	S 5	S6	S 7	S8	S9
0	0	1	0	B1	Bo	*	S10	S11	S12	S 13	S14
0	0	1	1	B1	Bo	*	S 15	S 16	S17	S18	S19
0	1	0	0	B1	Bo	*	S20	S21	S22	S 23	S24
0	1	0	1	B1	Bo	*	S25	S26	S27	S28	S29
0	1	1	0	B1	Bo	*	S 30	S 31	S32	S 33	S34
0	1	1	1	B1	Bo	*	S 35	S 36	S37	S38	S39
1	0	0	0	B1	Bo	*	S40	S41	S42	S 43	S44
1	0	0	1	B1	Bo	*	S 45	S 46	S47	S48	S49
1	0	1	0	B1	Bo	*	S50	S 51	S 52	S 53	S 54
1	0	1	1	B1	Bo	*	S55	S 56	S57	S 58	S59
1	1	0	0	B1	Bo	*	S 60	S 61	S62	S 63	S64
1	1	0	1	B1	Bo	*	S 65	S 66	S67	S68	S69
1	1	1	0	B1	Bo	*	S 70	S71	S72	S 73	S74
1	1	1	1	B1	Bo	*	S 75	S 76	S77	S78	S79

SEGRAM addresses vs. display patterns

* mark means "Don't care".

D7 and D6 : Blink control

D4 to D0 : Pattern displayed

NOTES :

- 1. Data stored in the SEGRAM is output for one-line display when COMI is selected.
- 2. Pins S0 to S79 are segment drive pins. Pin S0 is shown at the left end on the screen.
- 3. After output at pin S79, output at pin S0 is repeated.
- 4. For SEGRAM data, the lower 5 bits are used for display data.
- 5. If BE bit in the function set register is set to "1", the upper 1 bit (D7) in SEGRAM is used to control the blinking of the lower 5-bit pattern. When D7 is set to "1", the lower 5-bit display blinks. If bit D6 is "1", only the pattern of bit D4 can be blinked.
- 6. If SEGRAM data is "1", data is displayed; if "0", data isn't displayed.

8. CONFIGURATION OF DDRAM

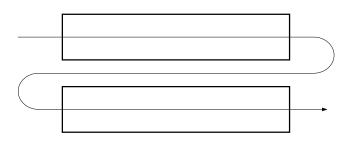
Display positions vs. display data RAM (DDRAM) addresses

		DIGIT														
	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th
COM ₀ to COM ₇	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
COM8 to COM15	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F

The above addressing is used because 16 digits are displayed. The DDRAM stores data for 32 characters.

If the display data is shifted, the DDRAM addresses are changed as follows :

Shift to right


								DIC	GIT							
	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th
COM ₀ to COM ₇	1F	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E
COM8 to COM15	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

Shift to left

		DIGIT														
	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th
COM ₀ to COM ₇	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10
COM8 to COM15	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	00

NOTE :

• The memory in the DDRAM is configured as follows :

Display area (16 characters x 2 lines)

As shown above, the 2nd data appears following the end of the data in the 1st line. Notice that the addresses are consecutive.

9. DESCRIPTION OF SERIAL INTERFACE [FOR LH1594]

LH1594 is built in I²C BUS format interface. The I²C BUS is for bi-directional two-line communication between different ICs or modules.

9.1. I²C BUS Protocol

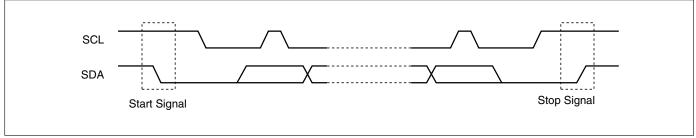
I²C BUS protocol consists of a data receiver and data transmitter.

The device which controls protocol is the master, the device which is controlled is the slave.

The master controls data transfer and provides clock signal.

The LH1594 is used as a slave receiver or slave transmitter.

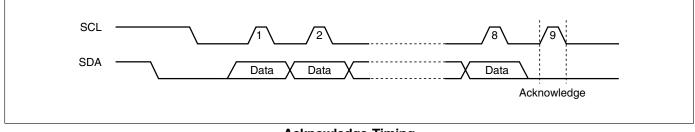
9.1.1. DATA TRANSFER


A change of SDA-state is allowed while SCL is low level. If SDA changes while SCL is high, this action is recognized as start bit or stop bit.

9.1.2. START SIGNAL

When the bus is not busy, SDA transfers high to low while SCL is high. This state is defined as the start condition.

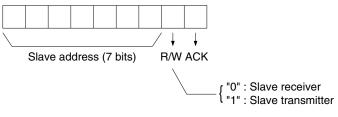
9.1.3. STOP SIGNAL


When the bus is not busy, SDA transfers low to high while SCL is high. This state is defined as the stop condition.

Start/Stop Timing

9.1.4. ACKNOWLEDGE

Acknowledge bit is used to confirm data transfer. A transmitter (master or slave) releases the bus line after receiving 8-bit data. During next clock (9th clock) receive, put low level on the bus to indicate data receive completely.



Acknowledge Timing

9.1.5. DEVICE ADDRESS CODE

After sending start bit, master device must transfer 8-bit device address code at first. Address code consists of 7 bits slave address and 1 bit R/W. During read operation, R/W bit is "1". During write

operation, R/W bit is "0".

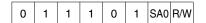
Send Data at First Cycle

9.1.6. DEVICE ADDRESSING

Bus master must generate start-condition to start data transfer between 2 devices.

After generating start condition, master puts 8-bit word on SDA bus line.

LH1594 is fixed higher order bits (corresponding to DB7 to DB2). To identify device, it is fixed to "011101".


Next 1 bit is used to select LCD driver among some devices connecting to same bus.

LH1594 can connect to same bus, up to 2 chips. SA0 is used for LSB bit for identifying device.

8th bit (R/W bit) defines operation mode.

R/W = "0" : Write operation

R/W = "1" : Read operation

LH1594 Slave Address

9.1.7. SECOND TRANSFERRED DATA

During slave receive mode, LH1594 is specified as a control-byte waiting mode after receiving start condition and first cycle of 1 byte. Control-byte consists of 3 bits.

These bits are used to specify function mode for operating instruction.

- Co : This bit defines transfer mode.
 - "0" : From next transfer byte, only data byte can be transferred.
 - "1" : Next transfer byte is data byte and after next transfer byte, control-byte must be input again.
- RS : RS corresponds to "RS" signal in command function table. This bit identifies transfer data.
- R/W : This bit defines read/write mode.
 - "0" : Readable mode
 - "1" : Write enable mode.

C ₀	RS	R/W	*	*	*	*	*			
* mark means "Don't care"										

Transfer Data at Second Cycle

9.2. Description of Pins Connected with The I²C BUS

SCL

Serial clock input pin. SCL is used for clock of all data I/O.

SDA

SDA is bi-directional pin, which is used for data I/O. SDA is open drain pin, connect to VDD via pull-up resistor.

SA0

SA0 is used for LSB bit of slave address (7 bits width). Must be fixed to "H" or "L" externally.

ISEL

ISEL selects whether to use I²C BUS or not.

When ISEL is "H", I²C BUS is enable. If ISEL is low, I²C BUS operation of LH1594 is not warrantied.

9.3. Example of I²C BUS Operation

STEP	I ² C BUS TRANSFER BYTE	DISPLAY	OPERATION
1	START I ² C BUS	Initialized. Not	
•	Send slave address		
2	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK	During the ack	nowledge cycle SDA will be
-		pulled down b	y LH1594.
	Send control byte		
3	Co RS R/W ACK	Control bits B	S, Co and R/W are specified.
Ū			
	Set function		
4	D7 D6 D5 D4 D3 D2 D1 D0 ACK	Sets RE bit to	"0"
	0 0 1 0 0 0 0 0 1		
	Clear display		
5	D7 D6 D5 D4 D3 D2 D1 D0 ACK	Display clear.	
Ű		Display cloan	
	Control display ON/OFF	Display and c	ursor are ON.
6	D7 D6 D5 D4 D3 D2 D1 D0 ACK		e cleared by operating
	0 0 0 0 1 1 1 0 1	display clear.	g
	Set entry mode	Entry mode se	et.
7	D7 D6 D5 D4 D3 D2 D1 D0 ACK		to RAM, address is increased
	0 0 0 0 0 1 1 0 1	- 0	r is shifted to right.
	Set CGRAM address		<u> </u>
8	D7 D6 D5 D4 D3 D2 D1 D0 ACK	Sets address	to write into CGRAM.
	0 1 0 0 0 0 0 1	_	
	Start condition		
9			"1" and generated start
		condition agai	n for writing.
	Send slave address		
10	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK	_	
	0 1 1 1 0 1 0 0 1		
	Send control byte		
11	Co RS R/W ACK	_	
	0 1 0 0 0 0 0 1		
	Write CGRAM data		
12	D7 D6 D5 D4 D3 D2 D1 D0 ACK	_ Writes data in	to CGRAM.
	0 0 0 CG4 CG3 CG2 CG1 CG0 1		
	:		
13	:		
	:		
	Start condition	0	and a sound lation of a sound of the sound lation
14			art condition again for setting
		– RS "0".	
		1	

SHARP

STEP	I ² C BUS TRANSFER BYTE	DISPLAY	OPERATION
-	Send slave address		
15	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK		
	0 1 1 1 0 1 0 0 1		
	Send control byte		
16	Co RS R/W ACK		
	0 0 0 0 0 0 0 0 1		
	Set DDRAM address		
17	D7 D6 D5 D4 D3 D2 D1 D0 ACK		Sets address for writing into DDRAM.
	1 0 0 0 0 0 0 1		
	Start condition		
18		_	Sets RS "1" and generates start condition
			again for writing into DDRAM.
	Send slave address		
19	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK	_	
	0 1 1 1 0 1 0 0 1		
	Send control byte		
20	Co RS R/W ACK	_	
	0 1 0 0 0 0 0 1		
	Write DDRAM data		
21	D7 D6 D5 D4 D3 D2 D1 D0 ACK	S_	Writes "S".
	0 1 0 1 0 0 1 1 1		
	:		
22	:		
	:		
	Write DDRAM data		
23	D7 D6 D5 D4 D3 D2 D1 D0 ACK	SHARP_	Writes "P".
	0 1 0 1 0 0 0 0 1		
	Start condition		Concretes start condition again for acting
24		SHARP_	Generates start condition again for setting
			RS "0".
	Send slave address		
25	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK	SHARP_	
	0 1 1 1 0 1 0 0 1		
	Send control byte		
26	Co RS R/W ACK	SHARP_	
	0 0 0 0 0 0 0 0 1		
	Set DDRAM address		
27	D7 D6 D5 D4 D3 D2 D1 D0 ACK	SHARP	Sets DDRAM address so that cursor is
	1 0 0 1 0 0 0 1	_	positioned at the top of 2nd line.

STEP	I ² C BUS TRANSFER BYTE	DISPLAY	OPERATION
	Start condition	SHARP	Sets RS "1" and generates start condition
28			again for writing into DDRAM.
		-	
	Send slave address	SHARP	
29	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK		
	0 1 1 1 0 1 0 0 1	-	
	Send control byte	SHARP	
30	Co RS R/W ACK	_	
	0 1 0 0 0 0 0 1 Write DDRAM data		
31	D7 D6 D5 D4 D3 D2 D1 D0 ACK	SHARP	Writes "L".
	0 1 0 0 1 1 0 0 1	L_	Willes L.
	· · · · · · · · · · · · · · · · · · ·		
32			
_	:		
	Write DDRAM data		
33	D7 D6 D5 D4 D3 D2 D1 D0 ACK	SHARP	Writes "R".
	0 1 0 1 0 0 1 0 1	LCDDRIVER_	
	Start condition	SHARP	Generates start condition again for setting
34		LCDDRIVER_	RS "0".
	Send slave address	SHARP	
35	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK	LCDDRIVER_	
	0 1 1 1 0 1 0 0 1 Send centrel bute		
36	Send control byte Co RS R/W ACK	SHARP	Sets control bit Co "1".
50		LCDDRIVER_	
	Set DDRAM address		
37	D7 D6 D5 D4 D3 D2 D1 D0 ACK	SHARP	Sets address for reading out DDRAM
_	1 0 0 0 0 0 0 1	LCDDRIVER_	data.
	Send control byte		
38	Co RS R/W ACK	SHARP	Sets control bit RS "1" and R/W "1".
	0 1 1 0 0 0 0 1	LCDDRIVER_	
	Start condition	SHARP	Generates start condition again for
39		LCDDRIVER_	reading out DDRAM.
	Send slave address	SHARP	Sets R/W "1" for reading out DDRAM
40	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W ACK	LCDDRIVER_	data.
	0 1 1 1 0 1 0 1 1		

STEP	I ² C BUS TRANSFER BYTE	DISPLAY	OPERATION
41	Read out data D7 D6 D5 D4 D3 D2 D1 D0 ACK MSB ··· ··· ··· ··· ··· LSB 0	SHARP LCDDRIVER_	Reads out DDRAM data from MSB to LSB. Master outputs acknowledge.
42			
43	Read out data D7 D6 D5 D4 D3 D2 D1 D0 ACK MSB ··· ··· ··· ··· ··· LSB 1	SHARP LCDDRIVER_	As master does not output acknowledge, data will not be output in the next cycle.
44	Stop condition	SHARP LCDDRIVER_	Generates stop condition and finishes.

10. ABSOLUTE MAXIMUM RATINGS

PARAMETER SYMBOL APPLIC		APPLICABLE PINS	RATING	UNIT	NOTE
Supply voltage (1)	Vdd	Vdd	-0.3 to +6.0	V	
Supply voltage (2)	VEE	VEE	-0.3 to +6.0	V	
Supply voltage (3)	Vout	Vout	-0.3 to +13.0	V	
Supply voltage (4)	VR1, VR2	VR1, VR2	-0.3 to +13.0	V	
Supply voltage (5)	Vo	Vo	-0.3 to +13.0	V	
Supply voltage (6)	V1, V2, V3, V4	V1, V2, V3, V4	-0.3 to Vo + 0.3	v	1, 2
Input voltage	Vı	D7-D0, CSB, RS, M86, RDB, WRB, CK, CKS, OSCI, P/S, RESB, PMODE, SHL0, SHL1, TEST	-0.3 to VDD + 0.3	V	
Storage temperature	Tstg		-45 to +125	°C	

NOTES :

1. TA = +25 °C

2. The maximum applicable voltage on any pin with respect to Vss (0 V).

11. RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	Vdd	VDD	+2.2		+5.5	V	1
	VEE	VEE	+2.4		+5.5	V	2
	Vo	Vo	+4.0		+11.0	V	3
Operating voltage	Vout	Vout	+4.0		+11.0	V	
	VR1, VR2	Vr1, Vr2	+4.0		+11.0	V	4
Operating temperature	TOPR		-30		+85	°C	

NOTES :

- 1. The applicable voltage on any pin with respect to Vss (0 V).
- 2. When using the booster circuit, power supply, VEE at the primary circuit must be used within the above-described range. If the drive voltage of LCD panel can be boosted by utilizing the voltage level of VDD, usually connect this pin to VDD power supply.
- 3. Ensure that voltages are set such that Vss < V4 < V3 < V2 < V1 < V0.
- 4. The operating range is adjusted by the external circuit constructed between VouT and VR1, VR2. The electric potential relation between the VR1, VR2 and VouT pins must be VR2 \leq VR1 \leq VouT.

12. ELECTRICAL CHARACTERISTICS

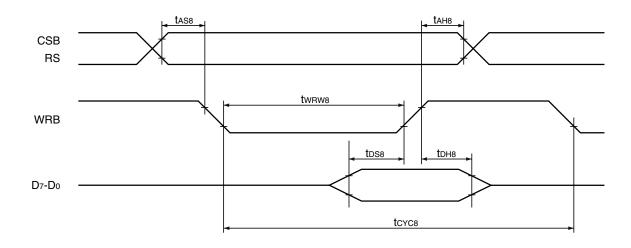
12.1. DC Characteristics

(Unless otherwise specified, Vss = 0 V, VDD = +2.2 to +5.5 V, TOPR = -30 to +85 °C)

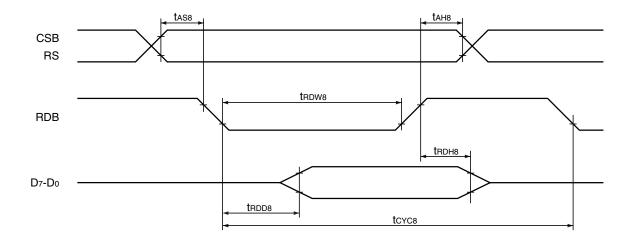
PARAMETER	SYMBOL	CONDI	TIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL			D7-D0, CSB, RS, M86, RDB, WRB, CK, CKS, OSCI, P/S,	0		0.2Vdd	V	
Input "High" voltage	Vін			RESB, PMODE, SHL0, SHL1	0.8Vdd		Vdd	V	
Output "Low" voltage	Vol	IOL = C).4 mA	D7-D0, LP, FLM, M			0.4	V	
Output "High" voltage	Vон	Юн = -	0.4 mA	D7-D0, LP, FLIVI, IVI	Vdd - 0.4			V	
Input leakage current	LI	VI = Vss or VDD		CSB, RS, M86, RDB, WRB, CK, CKS, OSCI, P/S, RESB, PMODE, SHL0, SHL1	-10		10	μA	
Output leakage current	Ilo	VI = Vss	or Vdd	D7-D0, LP, FLM, M	-10		10	μA	1
LCD drive output ON resistance	Ron1	ΔVon = 0.5 V	V0 = 8 V	SEG0-SEG79, COM0-COM15, COMI		4	8	kΩ	2
Static LCD drive output ON resistance	Ron2		= 0.5 V	SEGS0-SEGS9, COMS			8	kΩ	
Standby current	Istb	CK = 0 V CSB = VDD		Vdd			5 10	μA	3
Supply current (1)	IDD1	Boosting 3 times	VDD = 3 V $V0 = 6 V$	VDD, VEE		50	90	μA	4
Supply current (2)	IDD2	Boosting 2 times	$\frac{VDD = 3 V}{V0 = 5 V}$	VDD, VEE		35	60	μA	4
Oscillation frequency	fosc	RF = 1.2 MΩ±2%	VDD = 3 V	OSCO	30	55	80	kHz	5
Boosted output voltage	Vour	Boosting 3 times	Vee = 3 V	νουτ	8.6			V	6
Boosted output voltage	VOUT Boosting 2 times	Vee = 3 V	VOUT	5.7			v	0	
Reset ("L") pulse width	tRW			RESB	10			μs	

NOTES :

- 1. Applied when D7 to D0, LP, FLM, and M are in the high impedance state.
- Resistance when 0.5 V is applied between each output pin and each power supply (Vo, V1, V2, V3, V4 or Vss). Applied when power is supplied at power bias ratio of 1/7 in the external power supply mode.
- Current at the VDD pin when the master clock stops, the chip is not selected (CSB = VDD), and no load is used. All circuits stop.
- 4. Applied when no access is made by the MPU when the internal oscillation circuit (RF = 1.2 MΩ) and power supply circuit (PMODE = "L") are used. The electronic volume is pre-set (the code is "1 1 1 1"). The display is fully lit-up (ALON = "1") and the LCD drive pin is not loaded.


Measuring conditions : VDD = VEE, VR1 = VR2, C1 = C2 = 1 μ F, R1 + R2 + R3 = 4 M Ω , the current flowing through voltage control resistors (R1, R2, and R3) is included.

- 5. Oscillation frequency when connecting a feedback resistor (RF) of 1.2 M Ω between OSCI and OSCO.
- 6. Applied when the internal oscillation circuit (RF = 1.2 M Ω) and power supply circuit (PMODE = "L") are used. Measuring conditions : C1 = C2 = 1 μ F, VouT pin is connected only to C1 and the LCD drive pin is not loaded.


12.2. AC Characteristics

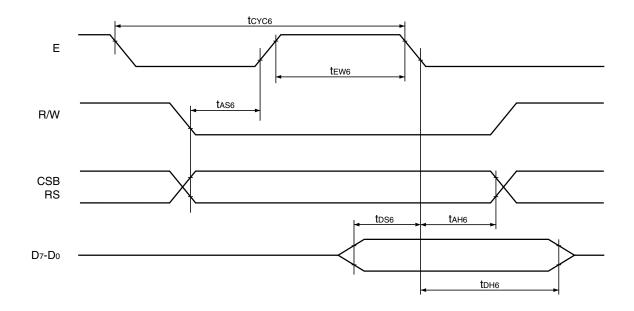
12.2.1. SYSTEM BUS READ/WRITE TIMING (80-FAMILY MPU)

(Write Timing)

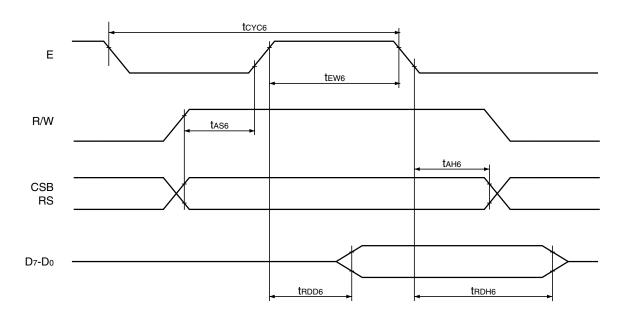
(Read Timing)

(80-family MPU Timing Chara	0-family MPU Timing Characteristics)				$(VDD = 4.5 \text{ to } 5.5 \text{ V}, \text{ TOPR} = -30 \text{ to } +85 ^{\circ}\text{C})$			
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT		
Address hold time	tah8		CSB	60		ns		
Address setup time	tAS8		RS	20		ns		
System cycle time	tCYC8		- WRB - RDB	400		ns		
Read pulse width	trdw8			200		ns		
Write pulse width	twRw8		סטח	50		ns		
Data setup time	tDS8		D7-D0	50		ns		
Data hold time	tDH8		D7-D0	20		ns		
Read data output delay time	tRDD8		D7-D0		150	ns		
Read data hold time	tRDH8	C∟ = 15 pF	D7-D0	10		ns		
Input signal rise and fall time	tR, tF		All of above pins		15	ns		

 $(V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, \text{ TOPR} = -30 \text{ to } +85 ^{\circ}\text{C})$ PARAMETER SYMBOL CONDITIONS **APPLICABLE PINS** MIN. MAX. UNIT Address hold time CSB 100 tah8 ns RS Address setup time tAS8 40 ns


System cycle time	tCYC8		WRB	600		ns
Read pulse width	tRDW8		RDB	400		ns
Write pulse width	twrw8		NDD	100		ns
Data setup time	tDS8		D7-D0	100		ns
Data hold time	tDH8		D7-D0	40		ns
Read data output delay time	tRDD8		D7-D0		300	ns
Read data hold time	tRDH8	C∟ = 15 pF	D7-D0	10		ns
Input signal rise and fall time	tR, tF		All of above pins		15	ns

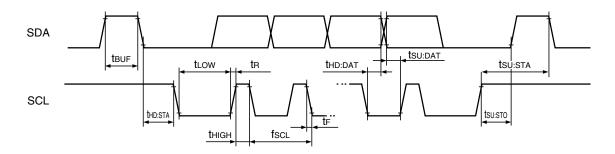
	TOPR =	-30 to	+85 °C)			
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT
Address hold time	tah8		CSB	200		ns
Address setup time	tAS8		RS	80		ns
System cycle time	tCYC8		- WRB - RDB	1 200		ns
Read pulse width	tRDW8			600		ns
Write pulse width	twRw8		DD	150		ns
Data setup time	tDS8		D7-D0	150		ns
Data hold time	tDH8		D7-D0	80		ns
Read data output delay time	tRDD8		D7-D0		500	ns
Read data hold time	tRDH8	C∟ = 15 pF	D7-D0	10		ns
Input signal rise and fall time	tR, tF		All of above pins		30	ns


NOTE : All the timings must be specified relative to 20% and 80% of VDD voltage.

12.2.2. SYSTEM BUS READ/WRITE TIMING (68-FAMILY MPU)

(Write Timing)

(Read Timing)

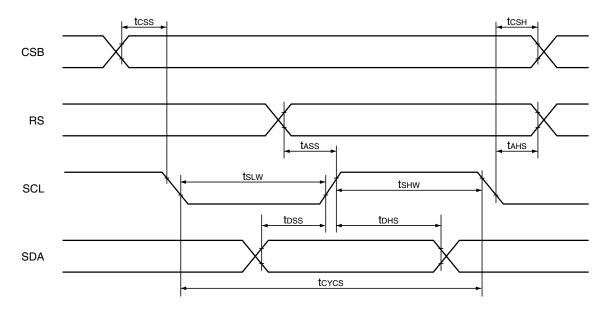

(68-family MPU Timing Chara	$(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ TOPR} = -30 \text{ to } +85 \degree \text{C})$					
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT
Address hold time	tah6		CSB	60		ns
Address setup time	tAS6		RS	20		ns
System cycle time	tCYC6			400		ns
Enable pulse width (READ)	tew6		E	200		ns
Enable pulse width (WRITE)				50		ns
Data setup time	tDS6		D7-D0	50		ns
Data hold time	tDH6		D7-D0	20		ns
Read data output delay time	tRDD6		D7-D0		150	ns
Read data hold time	tRDH6	C∟ = 15 pF	00-יע	10		ns
Input signal rise and fall time	tR, tF		All of above pins		15	ns

 $(VDD = 2.7 \text{ to } 4.5 \text{ V}, \text{ TOPR} = -30 \text{ to } +85 ^{\circ}\text{C})$ **APPLICABLE PINS** MAX. PARAMETER SYMBOL CONDITIONS MIN. UNIT Address hold time CSB 100 tah6 ns Address setup time tAS6 RS 40 ns 600 System cycle time tCYC6 ns Е Enable pulse width (READ) 400 ns tEW6 Enable pulse width (WRITE) 100 ns Data setup time 100 tDS6 ns D7-D0 Data hold time 40 tDH6 ns Read data output delay time trdd6 300 ns CL = 15 pFD7-D0 Read data hold time trdh6 10 ns Input signal rise and fall time All of above pins 15 tR, tF ns

	(VDD = 2.2 to 2.7 V,	TOPR =	-30 to	+85 °C)		
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT
Address hold time	tah6		CSB	200		ns
Address setup time	tAS6		RS	80		ns
System cycle time	tCYC6			1 200		ns
Enable pulse width (READ)	+=14/0		E	600		ns
Enable pulse width (WRITE)	tEW6			150		ns
Data setup time	tDS6		D7-D0	150		ns
Data hold time	tDH6		D7-D0	80		ns
Read data output delay time	tRDD6				500	ns
Read data hold time	tRDH6	C∟ = 15 pF	D7-D0	10		ns
Input signal rise and fall time	tR, tF		All of above pins		30	ns

NOTE : All the timings must be specified relative to 20% and 80% of VDD voltage.

12.2.3. SERIAL INTERFACE TIMING (I²C BUS) [FOR LH1594]



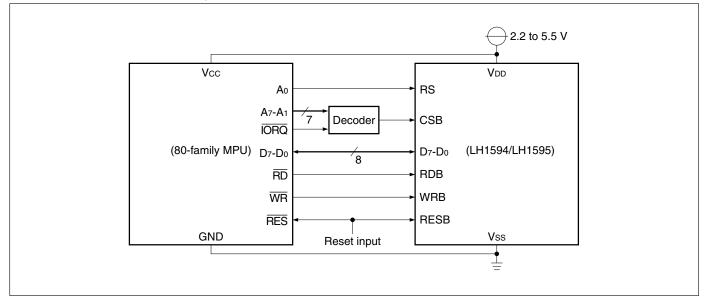
 $(VDD = 2.2 \text{ to } 5.5 \text{ V}, \text{ TOPR} = -30 \text{ to } +85 ^{\circ}\text{C})$

			$(VDD = 2.2 \ 10 \ 3.5 \ V,$			100 0)
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT
SCL clock frequency	fscl				100	kHz
Start condition hold time	thd:Sta		SCL	4.7		μs
SCL LOW time	tLOW		30L	4.7		μs
SCL HIGH time	thigh			4		μs
Bus free time	tBUF			4.7		μs
Data setup time	tsu:dat		SDA	250		ns
Data hold time	thd:dat			0		ns
Setup time for START condition	tsu:sta			4.7		μs
Setup time for STOP condition	tsu:sto		SCL	4		μs
SCL and SDA rise time	tR		SDA		1	μs
SCL and SDA fall time	tF				0.3	μs

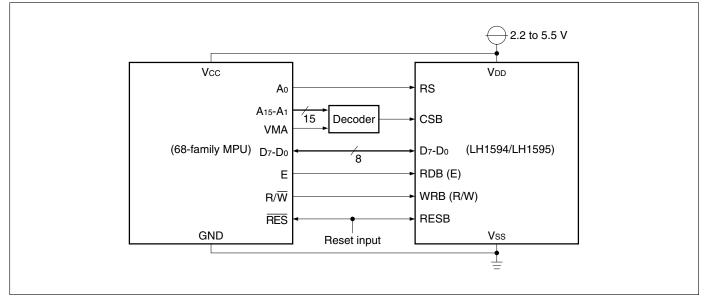
NOTE : All the timings must be specified relative to 20% and 80% of VDD voltage.

12.2.4. SERIAL INTERFACE TIMING [FOR LH1595]

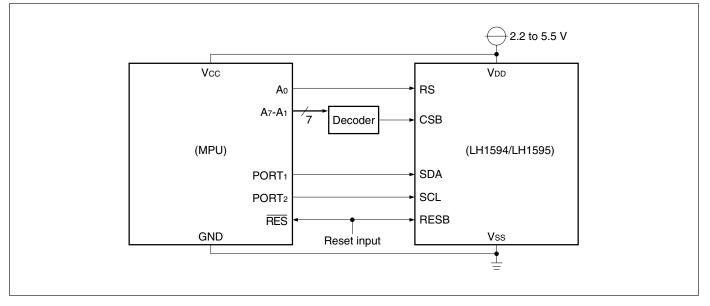
 $(VDD = 4.5 \text{ to } 5.5 \text{ V}, \text{ TOPR} = -30 \text{ to } +85 \degree \text{C})$


			,			,
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT
Serial clock period	tcycs		_	500		ns
SCL "H" pulse width	tshw		SCL	200		ns
SCL "L" pulse width	tsLw			200		ns
Address setup time	tass		RS	40		ns
Address hold time	tahs			40		ns
Data setup time	tDSS		004	200		ns
Data hold time	t DHS		SDA	200		ns
CSB to SCL time	tcss		CSB	40		ns
CSB hold time	tCSH		CSD	40		ns
Input signal rise and fall time	tR, tF		All of above pins		15	ns

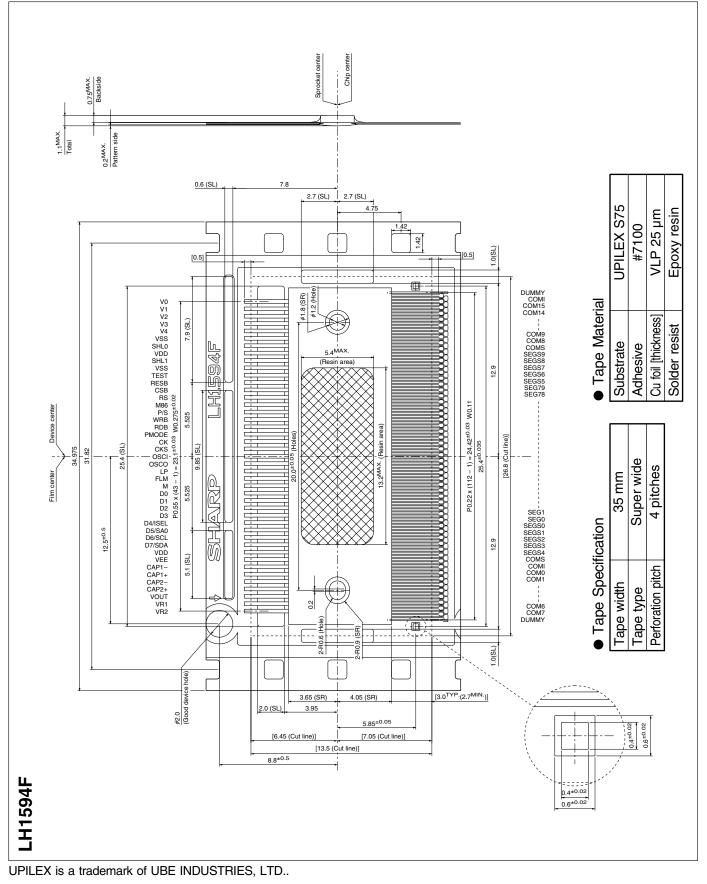
			(VDD = 2.2 to 4.5 V, TOPR = -30 to $+85$ °C)			
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	MAX.	UNIT
Serial clock period	tcycs		SCL	1 000		ns
SCL "H" pulse width	tshw			400		ns
SCL "L" pulse width	ts∟w			400		ns
Address setup time	tass		RS	80		ns
Address hold time	tahs			80		ns
Data setup time	tDSS		SDA	400		ns
Data hold time	t DHS			400		ns
CSB to SCL time	tcss		CSB	80		ns
CSB hold time	tCSH			80		ns
Input signal rise and fall time	tR, tF		All of above pins		30	ns


NOTE : All the timings must be specified relative to 20% and 80% of VDD voltage.

13. CONNECTION EXAMPLES OF REPRESENTATIVE APPLICATIONS


(a) Connection to The 80-family MPU

(b) Connection to The 68-family MPU


(c) Connection to The MPU with Serial Interface

* When connecting multiple LH1594/LH1595s, input to each CSB pin by varying the decoder conditions of address signals.

14. PACKAGE

(Unit : mm)

