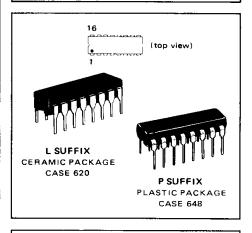
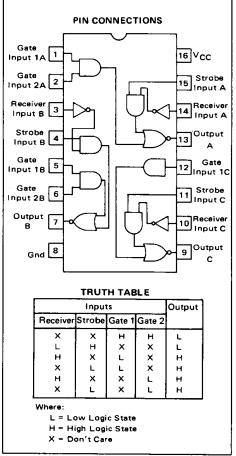


MC8T14 MC8T24


TRIPLE LINE RECEIVERS WITH HYSTERESIS


... specifically designed to meet the input/output specifications for IBM 360/370 Systems (IBM specification GA 22-6974-0). Each receiver incorporates hysteresis to provide high noise immunity and also high input impedance to minimize loading on the related driver.

- Each Channel Can Be Independently Strobed
- High Speed tpLH = tpHL = 20 ns
- Input Gating Provided on Each Line
- Operates on a Single +5.0 V Power Supply
- Fully Compatible with MTTL or MDTL Logic Systems
- Input Hysteresis Results in High Noise Immunity

TYPICAL APPLICATION 1/2 MC8T13 or 1/2 MC8T23 Coaxial Cable RT RT

TRIPLE LINE RECEIVERS WITH HYSTERESIS SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	7.0	Vdc	
Receiver Input Voltage (V _{CC} = 0)	VI(R)	7.0 6.0	Vdc ————	
Strobe or Gate Input Voltage	V _I (S) or (G)	5.5	Vdc	
Output Voltage	Vo	7.0	Vdc	
Output Current	10	±100	mA	
Power Dissipation (Package Limitation) Ceramic Package Derate above 25 ⁰ C	PD	1000 6.7	mW mW/ ^O C	
Plastic Package Derate above 25 ⁰ C		830 6.7	mW mW/ ^O C	
Junction Temperature Ceramic Package Plastic Package	τυ	175 150	°C	
Operating Ambient Temperature Range	TA	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $4.75 \le V_{CC} \le 5.25 \text{ V}$ and $0^{O}\text{C} \le T_{A} \le 75^{O}\text{C}$)

	-	N	1C8T1	4	M	C8T24	1	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Gate or Strobe Input Voltage — High Logic State	VIH(G) or (S)	2.0	-	_	2.0	-		٧
Gate or Strobe Input Voltage - Low Logic State	VIL(G) or (S)		_	0.8	-	1	0.8	V
Receiver Input Voltage — High Logic State	VIH(R)	2.0	_	_	1.7	-	-	Vdc
Receiver Input Voltage — Low Logic State	VIL(R)		_	0.8	-	_	0.7	Vdc
Receiver Input Hysteresis (1)	VH(R)	0.3	0.5	-	0.2	0.4	-	٧
$(V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}, V_{IL}(G) = 0, V_{IH}(S) \approx 4.5 \text{ V})$			<u> </u>					
Input Clamp Voltage	VIC(G) or (S)	-	-	1.5	-	-	1.5	٧
$(V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}, I_1 = -12 \text{ mA})$ (Strobe or Gate Inputs)		<u> </u>						
Input Breakdown Voltage	VI(G) or (S)	5.5	-	-	5.5	-	-	٧
(VCC = 5.0 V, I ₁ = 10 mA) (Strobe or Gate Inputs)	<u> </u>		<u> </u>			ļ		
Receiver Input Current — High Logic State	liH(R)			0.17				mA
$(V_{IH(R)} = 3.8 V)$		_	_	0.17	_		0.17	
$(V_{IH}(R) = 3.11 \text{ V})$			1 -	_	l _	_	5.0	1
$(V_{1H(R)} = 7.0 \text{ V})$	}		_	l _	l _		5.0	
(V _{IH} (R) = 6.0 V, V _{CC} = 0 V)	¹ 1H(G) or (S)	1	 	 	<u> </u>		t	μА
Gate or Strobe Input Current – High Logic State	TH(G) or (S)		_	40	_	_	40	
(V _{IH} (S) = 4.5 V, V _{IH} (R) = 3.11 V) (V _I H(G) = 4.5 V)		_	_	40	_	_	40	
Gate or Strobe Input Current — Low Logic State	IL(G) or (S)	-0.1	-	-1.6	-0.1		-1.6	mĀ
(VIL(G) or (S) = 0.4 V, VIL(R) = 0 V)	12,2,			ļ	ŀ			
Output Voltage - High Logic State	Voн							٧
$(V_{IH(R)} = 2.0 \text{ V}, V_{IH(S)} = 2.0 \text{ V}, V_{IL(G)} = 0.8 \text{ V}, I_{OH} = -800 \mu\text{A})$		2.6	3.5		-		-	
$(V_{IH(R)} = 0.8 \text{ V}, V_{IL(S)} = 0.8 \text{ V}, V_{IL(G)} = 0.8 \text{ V}, t_{OH} = -800 \mu\text{A})$		2.6	3.5	-	_	-	-	
$(V_{1H(B)} = 1.7 \text{ V}, V_{1H(S)} = 2.0 \text{ V}, V_{1L(G)} = 0.8 \text{ V}, I_{OH} = -800 \mu\text{A})$		-	-	-	2.6	3.4	-	
$(V_{IH(R)} = 0.7 \text{ V}, V_{IL(S)} = 0.8 \text{ V}, V_{IL(G)} = 0.8 \text{ V}, I_{OH} = -800 \mu\text{A})$				ļ-	2.6	3.4	↓-	.
Output Voltage - Low Logic State	VOL			١.,				V
$(V_{IL(R)} = 0.8 \text{ V}, V_{IH(S)} = 2.0 \text{ V}, V_{IL(G)} = 0.8 \text{ V}, I_{OL} = 16 \text{ mA})$		-		0.4	-	-	_	1
$(V_{IL}(R) = 0.8 \text{ V}, V_{IL}(S) = 0.8 \text{ V}, V_{IH}(G) = 2.0 \text{ V}, I_{OL} = 16 \text{ mA})$		-	-	0.4	-	-	0.4	
$(V_{IL}(R) = 0.7 \text{ V}, V_{IH}(S) = 2.0 \text{ V}, V_{IL}(G) = 0.8 \text{ V}, I_{OL} = 16 \text{ mA})$		_	-	-	_	_	0.4	ŀ
$(V_{IL}(R) = 0.7 \text{ V, } V_{IL}(S) = 0.8 \text{ V, } V_{IH}(G) = 2.0 \text{ V, } I_{OL} = 16 \text{ mA})$	<u> </u>		 _ _	 _	-	↓ _	1 0.4	
Output Short-Circuit Current (2)	los	-50	_	-100		l _	l _	mΑ
$(V_{IH}(R) = 3.8 \text{ V}, V_{IL}(G) = 0 \text{ V}, V_{IL}(S) = 0, V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C})$		-50	_	-100	-50	_	-100	I
$(V_{IH(R)} = 3.11 \text{ V}, V_{IL(G)} = 0 \text{ V}, V_{IL(S)} = 0 \text{ V}, V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C})$	ļ		-	72		60	72	mA
Power Supply Current	¹cc	-	60	1 12	-	١٣٠	12	"I"A
(V _{CC} = 5.25 V, T _A = 25°C)	<u> </u>		┸	<u>i </u>		<u> </u>	1	<u> </u>

⁽¹⁾ The Input Hysteresis is defined as the difference the input voltage at which the output begins to go from the high logic state to the low logic state and the input voltage which causes the output to begin to go from the low logic state to the high logic state.

⁽²⁾ Only one output may be shorted at a time.

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.)

Parameter	Symbol	M			
		Min	Тур	Max	Unit
Propagation Delay Time - Receiver Input to High Logic State Output	^t PLH(R)	-	20	30	ns
Propagation Delay Time Receiver Input to Low Logic State Output	^t PHL(R)	-	20	30	ns
Propagation Delay Time Strobe Input to High Logic State Output	ФLH(S)	-			ns
Propagation Delay Time Strobe Input to Low Logic State Output	tPHL(S)	-	_	_	ns
Propagation Delay Time Gate Input to High Logic State Output	[‡] PLH(G)	-	_	Ī -	ns
Propagation Delay Time Gate Input to Low Logic State Output	tPHL(G)	-	_	-	ns

FIGURE 1 – RECEIVER PROPAGATION DELAY TIMES $\psi_{LH(R)}$ and $\psi_{HL(R)}$ TEST CIRCUIT AND WAVEFORMS

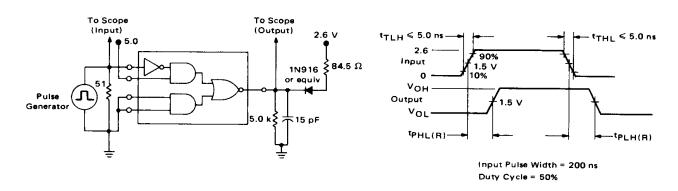
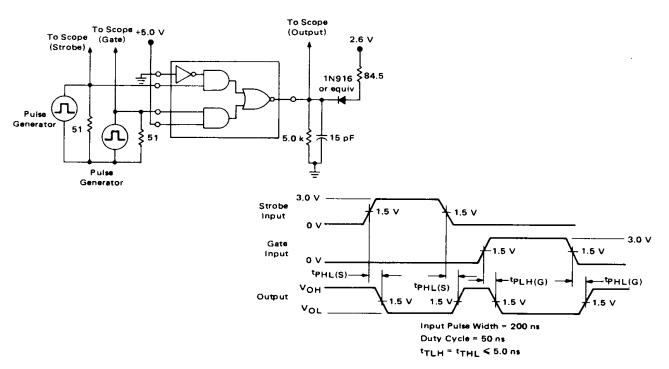
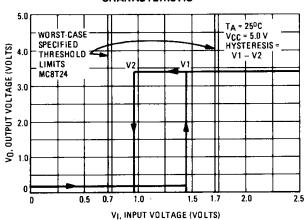
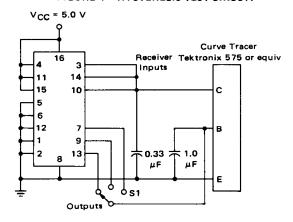


FIGURE 2 - GATE AND STROBE PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

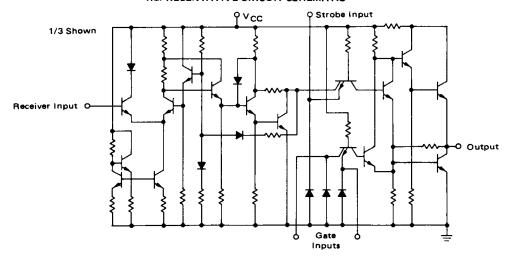

FIGURE 3 – TYPICAL RECEIVER HYSTERESIS CHARACTERISTIC

FIGURE 4 - HYSTERESIS TEST CIRCUIT

REPRESENTATIVE CIRCUIT SCHEMATIC

