This product is obsolete.
This information is available for your convenience only.

For more information on Zarlink's obsolete products and replacement product lists, please visit http://products.zarlink.com/obsolete products/

THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

SL6659

LOW POWER IF/AF CIRCUIT (WITH RSSI) FOR FM RADIO

The SL6659 is a complete single chip mixer, IF amplifier and detector for FM cellular radio, cordless telephones and low power radio applications. It features an exceptionally stable RSSI (Received Signal Strength Indicator) output using a unique system of detection. Supply current is less than 2 mA from a supply voltage in the range 2.5 V to 7.5 V .

FEATURES

Low Power Consumption (1.5mA)
Single Chip Solution
Guaranteed 200MHz Operation
Exceptionally Stable RSSI

APPLICATIONS

Cellular Radio Telephones
Cordless Telephones

ORDERING INFORMATION

SL6659 NA MP - Miniature plastic DIL package
SL6659 NA MPTD - As above, supplied on tape and reel

Fig. 1 Pin connections - top view

Fig. 2 Block diagram

ABSOLUTE MAXIMUM RATINGS

Supply voltage		8 V
Storage temperature	$55^{\circ} \mathrm{C}$ to	$150^{\circ} \mathrm{C}$
Mixer input		1 Vrms

NOTE: This device has static sensitive inputs, sensitivity typically measured as 500 V using MIL-STD-883 method 3015. Therefore, ESD handling precautions are essential to avoid degradation of performance or permanent damage of this device.

ELECTRICAL CHARACTERISTICS

The characteristics are guaranteed over the following condltions, unless otherwise stated:
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to $7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, $\mathrm{IF}=455 \mathrm{kHz}, R F=50 \mathrm{MHz}$, Quad Coil working $\mathrm{Q}=30$

Characteristic	Min.	Value		Units	Conditions
		Typ.	Max.		
Overall					
Supply current		1.5	$2 \cdot 0$	mA	20dB SINAD
Sensitivity		5		$\mu \mathrm{V}$	12dB SINAD
		3		$\mu \mathrm{V}$	RF input $<500 \mu \mathrm{~V}$
AM rejection		40		dB	$\mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$
$V_{\text {BIAS }}$	$1 \cdot 0$	$1 \cdot 2$	$1 \cdot 4$	V	See Note 2
Co-channel rejection		7		dB	
Mixer					
RF input impedance		1		k Ω	
LO input impedance		2		$\mathrm{k} \Omega$	
LO input bias		5		$\mu \mathrm{A}$	At $\mathrm{V}_{\text {BIAS }}$
Mixer gain		15		dB	$\mathrm{R}_{\text {LOAD }}=1.5 \mathrm{k} \Omega$
3 3rd order input intercept		10		dBm	
LO input level	180		300	mV	
LO frequency	200			MHz	
IF Amplifier					
Gain		90		dB	
Frequency	455	1500		kHz	
Differential input impedance		20		$\mathrm{k} \Omega$	
Detector					
Audio output level	75		125	mV	
Ultimate S/N ratio		60		dB	5 mV into pin 13
THD		$0 \cdot 5$	5	\%	
Output impedance		40		$\mathrm{k} \Omega$	
RSSI Output ($\mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$)					
Output current			25	$\mu \mathrm{A}$	No input pin13
	50		80	$\mu \mathrm{A}$	Pin $13=2.5 \mathrm{mV}$
Current change	$0 \cdot 9$	$1 \cdot 22$	1.5	$\mu \mathrm{A} / \mathrm{dB}$	See Note 1
Linear dynamic range	70			dB	See Note 1

NOTES

1. The RSSI output is 100% dynamically tested at 5 V and $20^{\circ} \mathrm{C}$ over a 70 dB range. First the input to pin 13 is set to 2.5 mV and the RSSI current recorded. Then for each step of 10 dB from 40 to 30 db , the current is measured. The current change in each step must meet the specified figure for current change. The RSSI output is guaranteed monotonic and free from discontinuities over this range.
2. Co-channel rejection is measured by applying a 3 kHz deviation, 1 kHz modulated signal at an input level to give a 20dB SINAD ratio. Then a 3 kHz deviation 400 Hz modulated slgnal on the same frequency is also applied and its level increased to degrade the SINAD to 14 dB .

Fig． 3 Internal schematic

GENERAL DESCRIPTION

The SL6659 is a very low power，high performance integrated circuit intended for IF amplification and demodulation in FM radio receivers．It comprises：
－A mixer stage for use up to 200 MHz
－A limiting amplifier operating up to $1 \cdot 5 \mathrm{MHz}$
－A quadrature detector with AF output
－An RSSI（Received Signal Strength Indicator）output

Mixer

The Mixer is single balanced with an active load．Gain is set externally by the load resistor，although the value is normally determined by that required for matching into the ceramic filter．It is possible to use a tuned circuit but an increase in mixer gain will result in a corresponding reduction of the mixer input intercept point．

The RF input is a diode－biased transistor with a bias current of typically $300 \mu \mathrm{~A}$ ．The LO input is differential but would normally be driven single－ended．Special care should be taken to avoid acciden－ tal overload of the local oscillator input．

IF Amplifier

The limiting amplifier is capable of operation to at least 1 MHz and the input impedance is set by an external resistor to match the
ceramic filter．Because of the high gain，pins 11 and 12 must be adequately bypassed．

Detector

A conventional quadrature detector providing audio output is fed internally from the IF amplifier；the quadrature input is fed externally using an appropriate capacitor and phase shift network．

RSSI Output

The RSSI output is a current source with value proportional to the logarithm of the IF signal amplitude．There is a small residual current due to noise within the amplifier（and mixer）but beyond this point there is a measured and guaranteed 70 dB dynamic range．The typical range extends to 92dB，independent of frequency，and with exceptionally good temperature and supply voltage stability．

Supply Voltage

The SL6659 will operate reliably trom $2 \cdot 5 \mathrm{~V}$ to $7 \cdot 5 \mathrm{~V}$ ．The supply line must be decoupled with 470 nF using short leads．

Internal Bias Voltage

The internal band－gap reference must be externally decoupled． It can be used as an external reference but must not be loaded heavily；the output impedance is typically 14Ω ．

rig. 4 Audio output v. input and temperature at $2 \cdot b \mathrm{~V}$

rig. ऽ Audıo output v. input and temperature at b•UV

Fig. 6
FreeHand 3.11
20/5/94 18:08

Fig. 6 Audio output v. input and temperature at 7.5 V

Fig. 8 SINAD v. input level

Fig. 9
FreeHand 3.11
20/5/94 18:09

Fig. 9 AM rejection and input level

Fig． 10
FreeHand 3.11
20／5／94 18：11

Fig． 10 RSSI output v．input and supply voltage （ $\mathrm{T}_{\text {AMB }}=20^{\circ} \mathrm{C}$ ）

Fig． 12
FreeHand 3.11
20／5／94 18：14
Fig． 13
FreeHand 3.11
20／5／94 18：15

Fig． 13 RSSI output v．input level and temperature
$\left(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\right)$

Fig． 14 （Signal noise）to noise ratio v．input level

Fig． 15 Supply current v ．supply voltage

rig． 10 Suppiy current v ．temperature

Fig． 17 Circuit diagram of SL6659 demonstration board

Fig． 18 Track side of demonstration board．Scale $=2: 1$ ．

Fig． 19 Ground plane side of demonstration board．Scale $=2: 1$ ．

Fig. 20 Demonstration board surface mount component overlay (track side). Scale $=$ 2:1.

Fig. 21 Demonstration board connectors and through-board component overlay (ground plane side). Scale $=2: 1$.

COMPONENT LIST

Resistors		Capacitors				Inductors	Filter	
R1	51Ω	C1	100nF	C8	470nF	L1＊ $330 \mu \mathrm{H}$（adjustable），	F1＊	MURATA
R2＊	$1 \mathrm{k} \Omega$	C2	10nF	C9	10 nF	CAMBION Type 553－7107－43		Type CFW 445 E
R3	$1.5 \mathrm{k} \Omega$	C3	10nF	C10	100 nF	RFC＊ $4 \cdot 7 \mu \mathrm{H}$		
R4	$10 \mathrm{k} \Omega$	C4	10pF	C11	$220 \mathrm{nF}^{*}$			
R5	$1.5 \mathrm{k} \Omega$	C5	330pF	C12	$220 n F^{*}$			
R6	$33 \mathrm{k} \Omega$	C6	$\begin{aligned} & 1 \mathrm{nF} \\ & 270 \mathrm{pF} \end{aligned}$		220 nF			

Components marked thus：＊are through－board mounted from the ground plane side；all other components are surface mounted on the track side．See Figs． 20 and 21.

NOTES

NOTES

PACKAGE DETAILS

Dimensions are shown thus: mm (in).

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom.
Tel: (0793) 518000
Fax: (0793) 518411
GEC PLESSEY SEMICONDUCTORS
P.O. Box 660017

1500 Green Hills Road,
Scotts Valley, CA95067-0017
United States of America.
Tel (408) 4382900
Fax: (408) 4385576

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax : (1) 64460607
- GERMANY Munich Tel: (089) $360906-0$ Fax : (089) $360906-55$
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (3) 5276-5501 Fax: (3) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 4382900 Fax: (408) 4387023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 4687029770 Fax: 4686404736
- TAIWAN, ROC Taipei Tel: 88625461260 Fax: 88627190260
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (0793) 518510 Fax : (0793) 518582
These are supported by Agents and Distributors in major countries world-wide.
© GEC Plessey Semiconductors 1994 Publication No. DS2471 Issue No. 3.1 June 1994
TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

For more information about all Zarlink products visit our Web Site at

 www.zarlink.comInformation relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in and $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE

