$\boldsymbol{L H}_{*}$	LF155-LF255-LF355 LF156-LF256-LF356 LF157-LF25-LF357
WIDE BANDWIDTH	
	SINGLE J-FET OPERATIONAL AMPLIFIERS

- HIGH INPUT IMPEDANCE J-FET INPUT STAGE
- HIGH SPEED J-FET OP-AMPs : up to 20 MHz , 50V/ $\mu \mathrm{s}$
- OFFSET VOLTAGE ADJUSTMENT DOES NOT DEGRADE DRIFT OR COMMON-MODE REJECTION AS IN MOST OF MONOLITHIC AMPLIFIERS
- INTERNAL COMPENSATION AND LARGE DIFFERENTIAL INPUT VOLTAGECAPABILITY (UP TO VCC ${ }^{+}$)

TYPICAL APPLICATIONS

- PRECISION HIGH SPEED INTEGRATORS
- FAST D/A AND CONVERTERS
- HIGH IMPEDANCE BUFFERS
- WIDEBAND, LOW NOISE, LOW DRIFT AMPLIFIERS
- LOGARITHIMIC AMPLIFIERS
- PHOTOCELL AMPLIFIERS
- SAMPLE AND HOLD CIRCUITS

DESCRIPTION

These circuits are monolithic J-FET input operational amplifiers incorporating well matched, high voltage J-FET on the same chip with standard bipolar transistors.
This amplifiers feature low input bias and offset currents, low input offset voltage and input offset voltage drift, coupledwith offset adjust which does not degrade drift or common-mode rejection.
The devices are also designed for high slew rate, wide bandwidth, extremely fastsettling time, lowvoltageand current noise and a low 1/f noise level.

ORDER CODES

Part Number	Temperature Range	Package	
		N	D
LF355, LF356, LF357	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet	\bullet
LF255, LF256, LF257	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet
LF155, LF156, LF157	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet
Example : LF355N			

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM

$V_{\text {io }}$ ADJUSTMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		± 22	V
V_{i}	Input Voltage - (note 1)		± 20	V
$V_{\text {id }}$	Differential Input Voltage		± 40	V
$P_{\text {tot }}$	Power Dissipation		570	mW
	Output Short-circuit Duration		Infinite	
$\mathrm{T}_{\text {oper }}$	Operating Free Air Temperature Range	LF155-LF156-LF157 LF255-LF256-LF257 LF355-LF356-LF357	$\begin{gathered} -55 \text { to }+125 \\ -40 \text { to }+105 \\ 0 \text { to } 70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range		-65 to 150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
$\begin{array}{lll}\text { LF155, LF156, LF157 } & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq+125^{\circ} \mathrm{C} & \pm 5 \mathrm{~V} \leq \mathrm{Vcc} \leq \pm 20 \mathrm{~V} \\ \text { LF255, LF256, LF257 } & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq+105^{\circ} \mathrm{C} & \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq \pm 20 \mathrm{~V}\end{array}$
(unless otherwise specified)

Symbol	Parameter		$\begin{aligned} & \text { LF155 - LF156 - LF157 } \\ & \text { LF255 - LF256 - LF257 } \\ & \hline \end{aligned}$			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(R_{S}=50 \Omega\right) \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{gathered}$	LF155, LF156, LF157 LF255, LF256, LF257		3	$\begin{gathered} 5 \\ 7 \\ 6.2 \\ \hline \end{gathered}$	mV
$\mathrm{I}_{\text {o }}$	$\begin{aligned} & \text { Input Offset Current - (note 3) } \\ & T_{\text {amb }}=25^{\circ} \mathrm{C} \\ & T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max. }} \end{aligned}$	LF155, LF156, LF157 LF255, LF256, LF257		3	20 20 1	pA nA nA
$\mathrm{l} \mathrm{l}^{\text {b }}$	$\begin{gathered} \text { Input Bias Current - (note } 3) \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{gathered}$	LF155, LF156, LF157 LF255, LF256, LF257		20	$\begin{gathered} 100 \\ 50 \\ 5 \end{gathered}$	$\begin{aligned} & \text { pA } \\ & \text { nA } \\ & \text { nA } \end{aligned}$
$A_{v d}$	$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}\right) \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{aligned}$		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		V/mV
SVR	Supply Voltage Rejection Ratio - (note 4)		85	100		dB
Icc	Supply Current ($\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, no load) $T_{\text {amb }}=25^{\circ} \mathrm{C}$	LF155, LF255 LF156, LF256 LF157, LF257		2 5 5	4 7 7	mA
$D V_{\text {io }}$	Input Offset Voltage Drift ($\mathrm{R}_{\mathrm{S}}=50 \Omega$)			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{DV}_{\text {io }} / \mathrm{V}_{\text {io }}$	Change in Average Temperature Coefficient with $\mathrm{V}_{\text {io }}$ adjust ($\mathrm{R}_{\mathrm{S}}=50 \Omega$) - (note 2)			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range ($\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$)		± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		V
CMR	Common Mode Rejection Ratio		85	100		dB
\pm Vopp	$\begin{aligned} & \hline \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		V
GBP	Gain Bandwidth Product $\left(\mathrm{V}_{\mathrm{Cc}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=\right.$ $\left.25^{\circ} \mathrm{C}\right)$ LF155, LF255 LF156, , LF256 LF157, LF257			$\begin{gathered} 2.5 \\ 5 \\ 20 \\ \hline \end{gathered}$		MHz
SR	$\begin{aligned} & \text { Slew Rate }\left(V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right) \\ & A_{V}=1 \\ & A_{V}=5 \end{aligned}$	LF155, LF255 LF156, LF256 LF157, LF257	$\begin{array}{r} 7.5 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 12 \\ & 50 \end{aligned}$		V/us
R_{i}	Input Resistance ($\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$)			10^{12}		Ω
C_{i}	Input Capacitance ($\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$)			3		pF
e_{n}	$\begin{aligned} & \text { Equivalent Input Noise Voltage } \\ & \begin{array}{l} \left(V_{\mathrm{cc}}= \pm 15 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega\right) \\ \mathrm{f}=1000 \mathrm{~Hz} \\ \mathrm{f}=100 \mathrm{~Hz} \end{array} \end{aligned}$ LF155, LF255			$\begin{aligned} & 20 \\ & 12 \\ & 12 \\ & 25 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Equivalent Input Noise Current$\left(\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{~Hz} \text { or } \mathrm{f}=1000 \mathrm{~Hz}\right)$			0.01		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
$\mathrm{t}_{\text {s }}$	Settling Time $\left(\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)-($ note 5)LF155, LF255LF156,LF256LF157, LF257			$\begin{gathered} 4 \\ 1.5 \\ 1.5 \end{gathered}$		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS
LF355, LF356, LF357 $\quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+70^{\circ} \mathrm{C} \quad \mathrm{VcC}= \pm 15 \mathrm{~V}$, (unless otherwise specified)

Symbol	Parameter		LF355-LF356-LF357			Unit
			Min.	Typ.	Max.	
$V_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(R_{\mathrm{S}}=50 \Omega\right) \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{gathered}$			3	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	mV
lio	$\begin{gathered} \text { Input Offset Current - (note 3) } \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max. }} . \end{gathered}$			3	$\begin{gathered} 50 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{pA} A \\ & \mathrm{nA} \end{aligned}$
l ib	$\begin{gathered} \text { Input Bias Current - (note } 3) \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max. }} \\ \hline \end{gathered}$			20	$\begin{gathered} 200 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Avd	$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,\right. \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max. }} . \end{aligned}$	$\pm 10 \mathrm{~V})$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	200		V/mV
SVR	Supply Voltage Rejection Ratio - (note		80	100		dB
Icc	Supply Current (no load) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { LF355 } \\ & \text { LF356, LF357 } \end{aligned}$		$\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ 10 \end{gathered}$	mA
DV ${ }_{\text {io }}$	Input Offset Voltage Drift ($\mathrm{R}_{\mathrm{S}}=50 \Omega$) - (note 2)			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$D V_{\text {io }} / V_{\text {io }}$	Change in Average Temperature Coefficient with $\mathrm{V}_{\text {io }}$ adjust ($\mathrm{Rs}=50 \Omega$)			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range ($\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$)		± 10	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		V
CMR	Common Mode Rejection Ratio		80	100		dB
$\pm \mathrm{V}_{\text {OPP }}$	Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		V
GBP	Gain Bandwidth Product $\mathrm{Tamb}=25^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { LF355 } \\ & \text { LF5356 } \\ & \text { LF357 } \end{aligned}$		$\begin{gathered} \hline 2.5 \\ 5 \\ 20 \end{gathered}$		MHz
SR	$\begin{aligned} & \text { Slew Rate }\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right) \\ & \mathrm{A}_{\mathrm{v}}=1 \\ & \mathrm{~A}_{\mathrm{V}}=5 \end{aligned}$	$\begin{aligned} & \text { LF355 } \\ & \text { LF356 } \\ & \text { LF357 } \end{aligned}$		$\begin{gathered} 5 \\ 12 \\ 50 \\ \hline \end{gathered}$		V/us
R_{i}	Input Resistance ($\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$)			10^{12}		Ω
Ci_{i}	Input Capacitance ($\mathrm{Tamb}=25^{\circ} \mathrm{C}$)			3		pF
e_{n}				$\begin{aligned} & 20 \\ & 12 \\ & 25 \\ & 15 \end{aligned}$		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Equivalent Input Noise Current$\left(T_{\text {amb }}=25^{\circ} \mathrm{C}, f=100 \mathrm{~Hz} \text { or } \mathrm{f}=1000 \mathrm{~Hz}\right)$			0.01		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
$\mathrm{t}_{\text {s }}$	Settling Time ($\left.\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right)-($ note 5)	$\begin{aligned} & \text { LF355 } \\ & \text { LF356, LF357 } \end{aligned}$		$\begin{gathered} \hline 4 \\ 1.5 \end{gathered}$		$\mu \mathrm{s}$

Notes: 1. Unless otherwise speafied the absolute maximum negative input voltage is equal to the negative power supply voltage.
2. The temperature coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\rho} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are alsounaffected by offset adjustment
3. The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature Tamb. Due to limited production test time, the input bias current measured is correlated to junction temperature. $^{\text {a }}$ In a normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\left.P_{\text {tot }} T_{\text {amb }}=T_{\text {amb }}+R_{\text {th }(j-a)}\right) \times P_{\text {tot }}$ where $\left.R \mathrm{th}_{\text {tija }}\right)$ is the thermal resistance from junction to ambient. Use of a heatsink is recommended finput currents are to be kept to a minimum.
4. Supply voltage rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordanœ with common practise.
5. Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155, LF156 series. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF157 series $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V .

APPLICATION HINTS

The LF155, LF156, LF157 series are op amps with JFETinput transistors. TheseJFETs havelarge reverse breakdown voltagesfromgateto source or drain eliminatingthe need of clamps across the inputs. Therefore large differential input voltages can easily be accommodatedwithoutalarge increaseof inputcurrents. The maximum differential input voltage is independent of the supply voltage. However, neitherof thenegative input voltagesshould be allowed to exceedthe negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either inputwill causeareversal of thephasetotheoutputandforce the amplifier output to the correspondinghigh or lowstate. Exceedingthe negativecommon-mode limit on bothinputs will force the amplifier outputto a high state. In neithercase does a latch occur since raising the input back within the common-mode range again puts the input stage and thusthe amplifier in a normal operating mode. Exceedingthe positive common-modelimit on a single input will not changethe phase of the output however, if bothinputsexceedthe limit, theoutput of theamplifier will be forced to ahigh state. These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-modevoltagecanexceedthepositivesupplyby approximately 100 mV independentof supply volt-age and over thefull operatingtemperaturerange. The positive suplly can thereforebe used as a referenceon an input as, forexample, in a supply current monitor and/or limiter. Precautionsshould be taken to ensurethat the powersupply for the integrated circuit never becomes re-versed in polarity or that the unit is not inadvertentlyin-stalled backwards
in a socket as an unilimited current surge throughthe resulting forward diode within the IC couldcausefusingoftheinternal conductorsandresultin a destroyedunit. Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
All of the bias currents inthese amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltages.
As with most amplifiers, care should betaken with lead dress, components placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to theinput to minimiz "pickup" and maximize the frequency of the feedback pole by minimizing the capacitancefrom the input to ground.
A feedback pole is createdwhen the feedbackaround any amplifier is resistive. The parallel resistance and capacitancefromthe input of thedevice(usually the invertinginput)toacgroundsetthefrequencyofthepole. In many instances the frequency of this pole is much greaterthanthe expected3 dBfrequencyof the closed loopgain and consequentlythereis negligible effect on stability margin. However, if the feedback pole is less than approximately six time the expected 3 dB frequencyaleadcapacitor should be placed from the output to the input of the op amp. The value of that added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

LF155 - LF156-LF157

TYPICAL CIRCUITS

LARGE POWER BW AMPLIFIER

SETTLING TIME TEST CIRCUIT

Settling time is tested with the LF155, LF156 connected as unity gain converter $R_{1}=2 k \Omega$ and LF157 conneted for $A v=-5$, $\mathrm{R}_{\mathrm{I}}=0.4 \mathrm{k} \Omega$

SMALL SIGNAL PULSE RESPONSE

OPEN LOOP VOLTAGE GAIN

MAXIMUMNEGATIVE COMMON-MODE INPUT VOLTAGE

BODE PLOT

BODE PLOT

ค POWER SUPPLYREJECTION RATIO

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		3.32			0.131	
a1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08		0.200	
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1	45° (typ.)					
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom- U.S.A.

