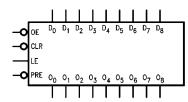
FAIRCHILD

SEMICONDUCTOR

74ACT843 9-Bit Transparent Latch

General Description

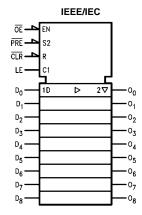
The ACT843 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths.


Ordering Code:

Order Number	Package Number	Package Description			
74ACT843SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide			
74ACT843SPC N24C 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. (SPC not available in Tape and Reel.)					

Features

TTL compatible inputs


Logic Symbols

Connection Diagram

■ 3-STATE outputs for bus interfacing

Pin Descriptions

Pin Names	Description
D ₀ -D ₈	Data Inputs
D ₀ –D ₈ O ₀ –O ₈	Data Outputs
OE	Output Enable
LE	Latch Enable
CLR	Clear
PRE	Preset

FACT™ is a trademark of Fairchild Semiconductor Corporation

© 2000 Fairchild Semiconductor Corporation DS009800

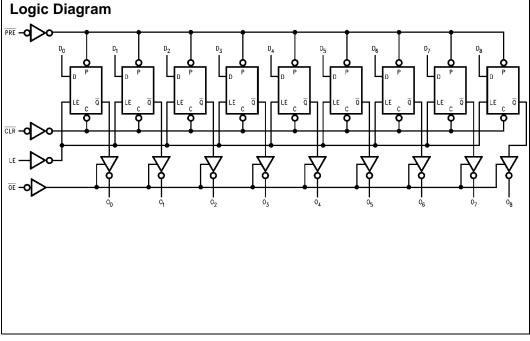
www.fairchildsemi.com

Functional Description

The ACT843 consists of nine D-type latches with 3-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the bus output is in the high impedance state. In addition to

the LE and $\overline{\text{OE}}$ pins, the ACT843 has a Clear ($\overline{\text{CLR}}$) pin and a Preset ($\overline{\text{PRE}}$) pin. These pins are ideal for parity bus interfacing in high performance systems. When $\overline{\text{CLR}}$ is LOW, the outputs are LOW if $\overline{\text{OE}}$ is LOW. When $\overline{\text{CLR}}$ is HIGH, data can be entered into the latch. When $\overline{\text{PRE}}$ is LOW, the outputs are HIGH if $\overline{\text{OE}}$ is LOW. Preset overrides CLR.

Function Tables


	Inputs				Internal	Outputs	F ormation	
CLR	PRE	OE	LE	D	Q	0	Function	
н	Н	Н	Н	L	L	Z	High Z	
н	н	н	н	н	н	Z	High Z	
н	н	н	L	х	NC	Z	Latched	
н	н	L	н	L	L	L	Transparent	
н	н	L	н	н	н	н	Transparent	
н	н	L	L	х	NC	NC	Latched	
н	L	L	Х	х	н	н	Preset	
L	н	L	Х	х	L	L	Clear	
L	L	L	Х	х	н	н	Preset	
L	н	н	L	Х	L	Z	Clear/High Z	
н	L	н	L	х	н	z	Preset/High Z	

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

X = Immaterial Z = High Impedance

NC = No Change

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

	•
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} +0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} +0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

74ACT843

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Symbol	Farameter	(V)	(V) Typ		Guaranteed Limits		Conditions	
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$	
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4	v	1 _{OUT} = -30 μA	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
	Output Voltage	5.5	0.001	0.1	0.1	v	100T - 30 μA	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		0.36	0.44	V	I _O = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND	
	Leakage Current	5.5		10.1	±1.0		VI = VCC, GND	
I _{OZ}	Maximum 3-STATE	5.5	+0.5	±0.5	±5.0	μΑ	$V_I = V_{IL}, V_{IH}$	
	Leakage Current	0.0		10.5			$V_{O} = V_{CC}$, GND	
ICCT	Maximum	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$	
	I _{CC} /Input	0.0	0.0		1.5	IIIA	v] = v _{CC} = 2.1v	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$	
	Supply Current	0.0		0.0	00.0	μΑ	or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

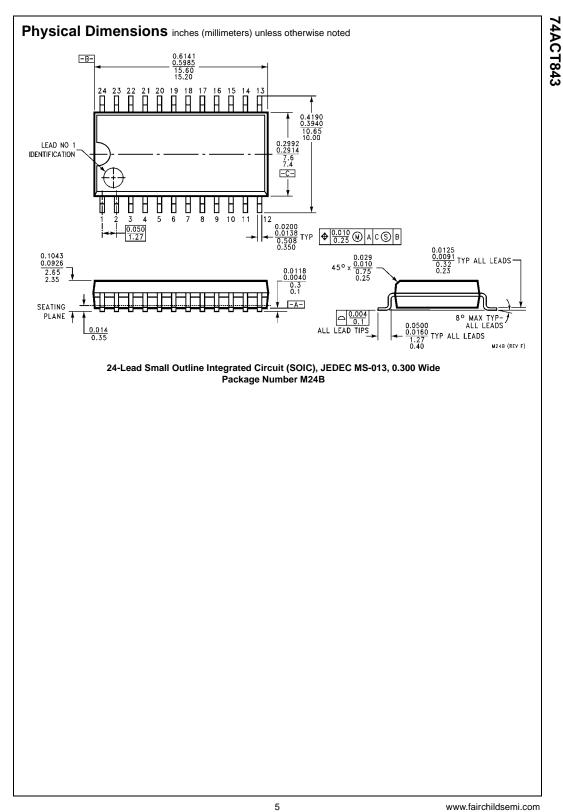
<u>e</u> 2
ম
œ
H
C
∢
4
~

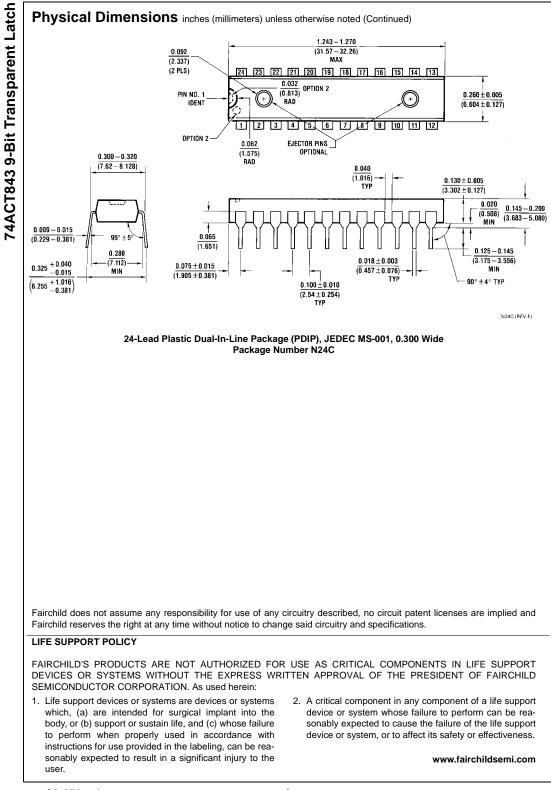
AC Electrical Characteristics

Symbol	Parameter	v _{cc}	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units
		(V)						
		(Note 4)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay D _n to O _n	5.0	2.5	5.5	9.5	2.0	10.0	ns
t _{PHL}	Propagation Delay D _n to O _n	5.0	2.5	5.5	9.5	2.0	10.0	ns
t _{PLH}	Propagation Delay LE to O _n	5.0	2.5	5.5	9.0	2.0	10.0	ns
t _{PHL}	Propagation Delay LE to O _n	5.0	2.5	5.5	9.0	2.0	10.0	ns
t _{PLH}	Propagation Delay PRE to O _n	5.0	2.5	6.5	14.0	2.0	16.0	ns
t _{PHL}	Propagation Delay CLR to O _n	5.0	2.5	7.5	15.5	2.0	17.5	ns
t _{PZH}	Output Enable Time OE to O _n	5.0	2.5	5.5	9.5	2.0	10.5	ns
t _{PZL}	Output Enable Time OE to O _n	5.0	2.5	5.5	9.5	2.0	10.5	ns
t _{PHZ}	Output Disable Time \overline{OE} to O_n	5.0	2.5	6.0	10.5	2.0	11.0	ns
t _{PLZ}	Output Disable Time OE to O _n	5.0	2.5	6.0	10.5	2.0	11.0	ns
t _{PHL}	Propagation Delay PRE to O _n	5.0	2.5	6.0	10.5	2.0	11.0	ns
t _{PLH}	Propagation Delay CLR to O _n	5.0	2.5	5.5	9.5	2.0	10.5	ns

Note 4: Voltage Range 5.0 is $5.0V\pm0.5V$

AC Operating Requirements


Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF	Units
		(Note 5)	Тур	Gua	aranteed Minimum	
t _S	Setup Time, HIGH or LOW D_n to LE	5.0	-0.5	0.5	1.0	ns
t _H	Hold Time, HIGH or LOW D _n to LE	5.0	0.5	2.0	2.0	ns
t _W	LE Pulse Width, HIGH	5.0	2.0	3.5	3.5	ns
t _W	PRE Pulse Width, LOW	5.0	5.0	8.5	10.0	ns
t _W	CLR Pulse Width, LOW	5.0	5.5	9.5	11.0	ns
t _{rec}	PRE Recovery Time	5.0	0.5	2.0	2.0	ns
t _{rec}	CLR Recovery Time	5.0	-0.5	1.0	1.0	ns


Note 5: Voltage Range 5.0 is $5.0V\pm0.5V$

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = OPEN$
C _{PD}	Power Dissipation Capacitance	44	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com

