

MOS INTEGRATED CIRCUIT $\mu PD75P3036$

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD75P3036 replaces the μ PD753036's internal mask ROM with a one-time PROM or EPROM. Because the μ PD75P3036 supports programming by users, it is suitable for use in prototype testing for system development using the μ PD753036 and for use in small-scale production.

★ Caution The µPD75P3036KK-T is not designed to guarantee the reliability required for use in massproduction. Please use it only for performance evaluation during testing and test production runs.

Detailed descriptions of functions are provided in the following document. Be sure to read the document before designing.

 μ PD753036 User's Manual : U10201E

FEATURES

- Compatible with μPD753036
- Internal PROM: 16384 × 8 bits
 - μ PD75P3036KK-T : Reprogrammable (ideally suited for system evaluation)
 - μPD75P3036GC, 75P3036GK : One-time programmable (ideally suited for small-scale production)
- Internal RAM: 768 × 4 bits
- Can operate in the same power supply voltage as the mask version μ PD753036
 - V_{DD} = 1.8 to 5.5 V
- LCD controller/driver
- A/D converter

Caution Mask-option pull-up resistors are not provided in this device.

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

ORDERING INFORMATION

	Part Number	Package	Internal PROM	Quality Grade
	μ PD75P3036GC-3B9	80-pin plastic QFP	One-time PROM	Standard
		(14 \times 14 mm, 0.65-mm pitch)		
*	μ PD75P3036GC-3B9-A	80-pin plastic QFP	One-time PROM	Standard
		(14 \times 14 mm, 0.65-mm pitch)		
	μ PD75P3036GK-BE9	80-pin plastic TQFP	One-time PROM	Standard
		(fine pitch) (12 \times 12 mm, 0.5-mm pitch)		
*	μ PD75P3036GK-BE9-A	80-pin plastic TQFP	One-time PROM	Standard
		(fine pitch) (12 \times 12 mm, 0.5-mm pitch)		
*	μ PD75P3036KK-T	80-pin ceramic WQFN	EPROM	Not applicable

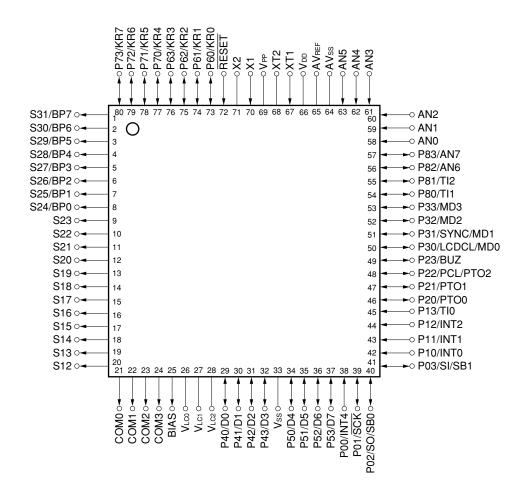
Remark Products with "-A" at the end of the part number are lead-free products.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of quality grade on the devices and its recommended applications.

Functional Outline

Parameter					Function			
Instruction execution time			• 0.95, 1.91, 3.81, 15.3 μ s (main system clock: during 4.19-MHz operation) • 0.67, 1.33, 2.67, 10.7 μ s (main system clock: during 6.0-MHz operation) • 122 μ s (subsystem clock: during 32.768-kHz operation)					
Internal r	memory	PROM	163	884 × 8 bits				
		RAM	768	3 × 4 bits				
General	purpose register			H-bit operation: 8×4 baselit operation: 4×4 baselit operation: 4×4 baseline				
Input/	CMOS input		8	On-chip pull-up resisto	rs can be specified by using software: 27			
output	CMOS input/o	utput	20					
port	Bit port output		8	Also used for segment	pins			
	N-ch open-dra		8	13 V withstand voltage				
	Total		44					
LCD con	troller/driver		• 9	Segment selection:	12/16/20 segments (can be changed to bit port output in unit of 4; max. 8)			
			• [Display mode selection:	Static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias), 1/3 duty (1/3 bias), 1/4 duty (1/3 bias)			
Timer			• 8 (5 channels 8-bit timer/event counter: 3 channels (16-bit timer/event counter, carrier generator, timer with gate) Basic interval/watchdog timer: 1 channel Watch timer: 1 channel 				
Serial int	erface		 3-wire serial I/O mode MSB or LSB can be selected for transferring first bit 2-wire serial I/O mode SBI mode 					
A/D conv	verter		8-b	8-bit resolution: 8 channels				
Bit seque	ential buffer (BSE	3)	16	16 bits				
Clock ou	tput (PCL)		 Φ, 524, 262, 65.5 kHz (main system clock: during 4.19-MHz operation) Φ, 750, 375, 93.8 kHz (main system clock: during 6.0-MHz operation) 					
Buzzer o	utput (BUZ)			 2, 4, 32 kHz (main system clock: during 4.19-MHz operation or subsystem clock: during 32.768-kHz operation) 2.86, 5.72, 45.8 kHz (main system clock: during 6.0-MHz operation) 				
Vectored	interrupt		Ext	ernal: 3, Internal: 5				
Test inpu	ut		Ext	ernal: 1, Internal: 1				
System clock oscillator				Ceramic or crystal oscilla Crystal oscillator for subs	tor for main system clock oscillation system clock oscillation			
Standby function			ST	OP/HALT mode				
Power su	ipply voltage		VDD	= 1.8 to 5.5 V				
Package			• 8	 80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm) 80-pin ceramic WQFN 				

*


CONTENTS

1.	PIN CONFIGURATION (Top View)	. 5
2.	BLOCK DIAGRAM	. 7
3.	PIN FUNCTIONS 3.1 Port Pins 3.2 Non-port Pins 3.3 Pin Input/Output Circuits 3.4 Recommended Connection of Unused Pins	. 8 . 10 . 12
	Mk I MODE AND Mk II MODE SELECTION FUNCTION	. 16 . 17
5.	DIFFERENCES BETWEEN μ PD75P3036 AND μ PD753036	. 18
6.	PROGRAM COUNTER (PC) AND MEMORY MAP 6.1 Program Counter (PC) 6.2 Program Memory (PROM) 6.3 Data Memory (RAM)	. 19 . 19
7.	INSTRUCTION SET	. 22
8.	PROM (PROGRAM MEMORY) WRITE AND VERIFY	. 31 . 32
9.	PROGRAM ERASURE (µPD75P3036KK-T ONLY)	. 34
10	. OPAQUE FILM ON ERASURE WINDOW (μPD75P3036KK-T ONLY)	. 34
11	ONE-TIME PROM SCREENING	. 34
12	. ELECTRICAL SPECIFICATIONS	. 35
13	. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)	. 50
14	. PACKAGE DRAWINGS	. 52
15	. RECOMMENDED SOLDERING CONDITIONS	. 55
AF	PPENDIX A. FUNCTION LIST OF μ PD75336, 753036, AND 75P3036	. 57
AF	PPENDIX B. DEVELOPMENT TOOLS	. 58
AF	PPENDIX C. RELATED DOCUMENTS	. 62

1. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP (14 \times 14 mm) μ PD75P3036GC-3B9
- * μPD75P3036GC-3B9-A
 - 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) μ PD75P3036GK-BE9
- * μPD75P3036GK-BE9-A
 - 80-pin ceramic WQFN μPD75P3036KK-T

Caution Connect the VPP pin directly to VDD.

SO

PIN IDENTIFICATIONS

P00 to P03 : Port0 P10 to P13 : Port1 P20 to P23 : Port2 P30 to P33 : Port3 P40 to P43 : Port4 P50 to P53 : Port5 P60 to P63 : Port6 P70 to P73 : Port7 P80 to P83 : Port8 BP0 to BP7 : Bit Port0-7 KR0 to KR7 : Key Return 0-7 SCK : Serial Clock SI : Serial Input

SB0, SB1 : Serial Bus 0,1

AVREF : Analog Reference

AVSS : Analog Ground

AN0-AN7 : Analog Input 0-7

MD0 to MD3 : Mode Selection 0-3

D0 to D7 : Data Bus 0-7

: Serial Output

S12 to S31 : Segment Output 12-31 COM0 to COM3 : Common Output 0-3 VLC0 to VLC2 : LCD Power Supply 0-2

BIAS : LCD Power Supply Bias Control

LCDCL : LCD Clock

SYNC : LCD Synchronization TI0 to TI2 : Timer Input 0-2

PTO0 to PTO2 : Programmable Timer Output 0-2

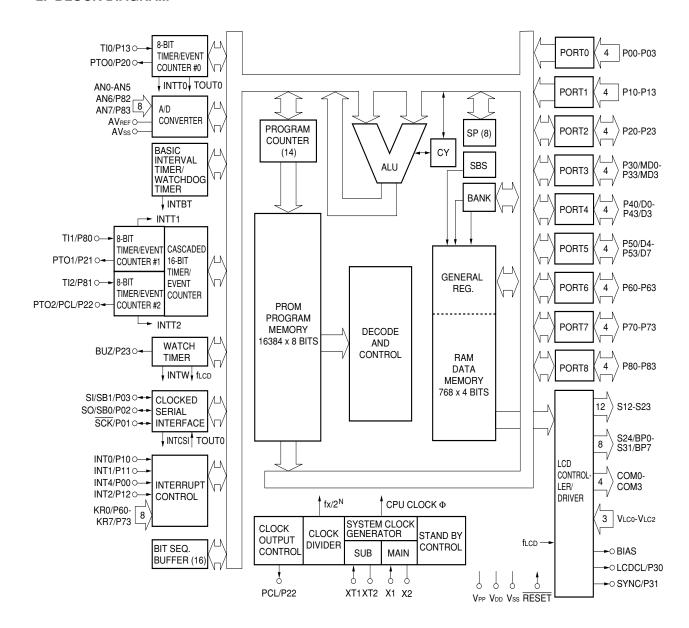
BUZ : Buzzer Clock

PCL : Programmable Clock

INT0, INT1, INT4: External Vectored Interrupt 0, 1, 4

INT2 : External Test Input 2

X1, X2 : Main System Clock Oscillation 1, 2 XT1, XT2 : Subsystem Clock Oscillation 1, 2


RESET : Reset

VPP : Programming Power SupplyVDD : Positive Power Supply

Vss : Ground

2. BLOCK DIAGRAM

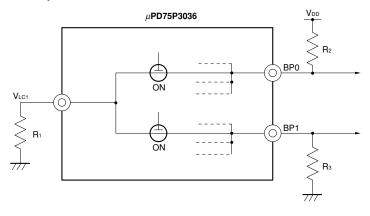
3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin name	I/O	Alternate function	Function	8-bit I/O	Status after reset	I/O circuit type ^{Note 1}
P00	Input	INT4	This is a 4-bit input port (PORT0). Connection of an on-chip pull-up resistor can be		Input	
P01	I/O	SCK	specified in 3-bit units by software for P01 to P03.			<f>-A</f>
P02	I/O	SO/SB0				<f>-B</f>
P03	I/O	SI/SB1				<m>-C</m>
P10	Input	INT0	This is a 4-bit input port (PORT1).	No	Input	-C
P11		INT1	Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.			
P12		INT2	P10/INT0 can select noise elimination circuit.			
P13		TIO				
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2).	No	Input	E-B
P21		PTO1	Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.			
P22		PCL/PTO2				
P23		BUZ				
P30	I/O	LCDCL/MD0	This is a programmable 4-bit I/O port (PORT3).	No	Input	E-B
P31		SYNC/MD1	Input and output can be specified in bit units. Connection of an on-chip pull-up resistor can be			
P32		MD2	specified in 4-bit units by software.			
P33		MD3				
P40Note 2	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4).	Yes	High	M-E
P41Note 2		D1	When set to open-drain, voltage is 13 V. Also functions as data I/O pin (lower 4 bits)		impedance	
P42Note 2		D2	for program memory (PROM) write/verify.			
P43Note 2		D3				
P50Note 2	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5).		High	M-E
P51Note 2		D5	When set to open-drain, voltage is 13 V. Also functions as data I/O pin (upper 4 bits)		impedance	
P52Note 2		D6	for program memory (PROM) write/verify.			
P53Note 2	1	D7				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. Low level input leakage current increases when input instructions or bit manipulate instructions are executed.


8

3.1 Port Pins (2/2)

Pin name	I/O	Alternate function	Function	8-bit I/O	Status after reset	I/O circuit type ^{Note 1}
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6). Input and output can be specified in bit units.	Yes	Input	<f>-A</f>
P61		KR1	Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.			
P62		KR2	specified in 4-bit units by software.			
P63		KR3				
P70	I/O	KR4	This is a 4-bit I/O port (PORT7).		Input	<f>-A</f>
P71		KR5	Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.			
P72		KR6				
P73		KR7				
P80	I/O	TI1	This is a 4-bit I/O port (PORT8).	No	Input	<e>-E</e>
P81		TI2	Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.			
P82		AN6				Y-B
P83		AN7				
BP0	Output	S24	These pins are also used as 1-bit I/O port (BIT	No	Note 2	H-A
BP1		S25	PORT) segment output pin.			
BP2		S26				
BP3		S27				
BP4	Output	S28				
BP5		S29				
BP6		S30				
BP7		S31				

- Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.
- ★ 2. BP0 through BP7 select V_{LC1} as an input source.
 However, the output levels change depending on the external circuit of BP0 through BP7 and V_{LC1}.
- **Example** Because BP0 through BP7 are mutually connected inside the μ PD75P3036, the output levels of BP0 through BP7 are determined by R₁, R₂, and R₃.

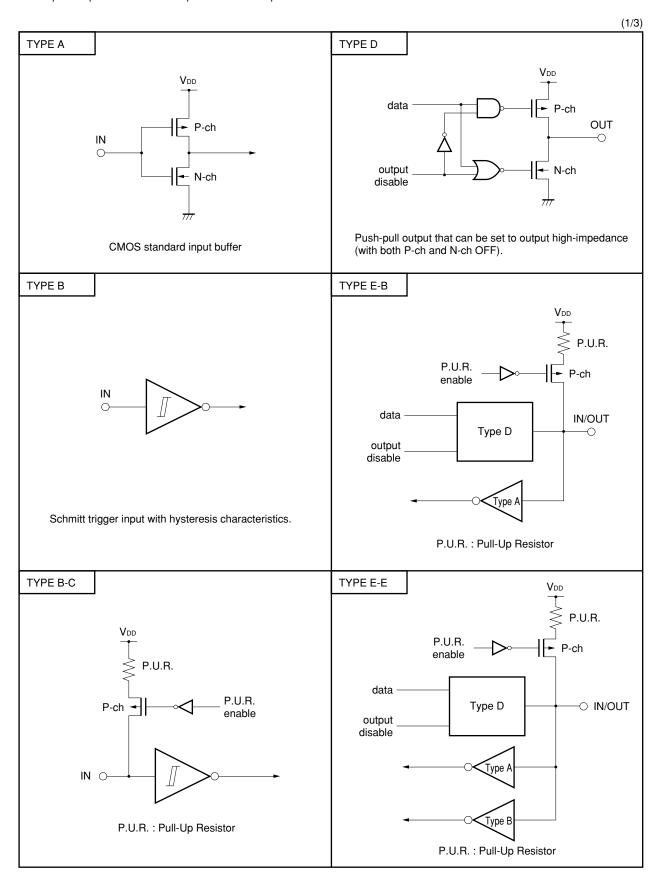
3.2 Non-port Pins (1/2)

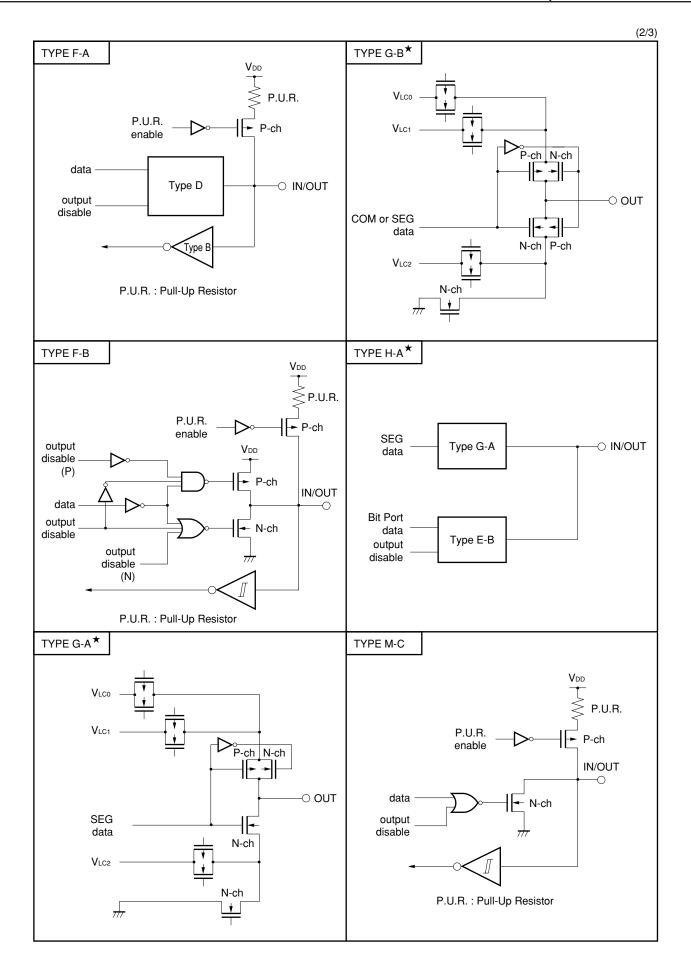
Pin name	I/O	Alternate function	Function	Status after reset	I/O circuit type ^{Note}	
TI0	Input	P13	External event pulse input to timer/even	Input	-C	
TI1		P80			<e>-E</e>	
TI2		P81				
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22/PCL				
PCL	Output	P22/PTO2	Clock output		Input	E-B
BUZ	Output	P23	Frequency output (for buzzer or system	clock trimming)	Input	E-B
SCK	I/O	P01	Serial clock I/O		Input	<f>-A</f>
SO/SB0	I/O	P02	Serial data output Serial data bus I/O		Input	<f>-B</f>
SI/SB1	I/O	P03	Serial data input Serial data bus I/O		Input	<m>-C</m>
INT4	Input	P00	Edge detection vectored interrupt input (valid for detecting both rising and falling	g edges)	Input	
INT0	Input	P10	Edge detection vectored interrupt input (detected edge is selectable) INT0/P10 can select noise elimination circuit.	Noise elimination circuit /asynchronous is selectable	Input	-C
INT1		P11		Asynchronous		
INT2	Input	P12	Rising edge detection test input	Asynchonous	Input	-C
KR0 to KR3	Input	P60 to P63	Parallel falling edge detection test input		Input	<f>-A</f>
KR4 to KR7	Input	P70 to P73	Parallel falling edge detection test input		Input	<f>-A</f>
X1 X2	Input	_	Ceramic/crystal oscillation circuit connectock. If using an external clock, input to	•	_	_
	Innut	<u> </u>	inverted phase to X2.	aubayatam alaak		
XT1 XT2	Input —		Crystal oscillation circuit connection for If using an external clock, input to XT1 a phase to XT2. XT1 can be used as a 1-	and input inverted	_	_
RESET	Input		System reset input (low level active)	, , ,	_	
MD0	I/O	P30/LCDCL	Mode selection for program memory (PI	ROM) write/verify	Input	E-B
MD1		P31/SYNC		-		
MD2, MD3	1	P32, P33	-			
D0 to D3	I/O	P40 to P43	Data bus for program memory (PROM)	write/verify	Input	M-E
D4 to D7		P50 to P53		Data 505 for program memory (FITOW) write/verily		
VPP	_	_	Programmable power supply voltage for (PROM) write/verify. For normal operation, connect to VDD. Apply +12.5 V for PROM write/verify.	_	_	
V _{DD}	_	_	Positive power supply		_	_
Vss			Ground		_	_

Note Circuit types enclosed in brackets indicate Schmitt trigger input.

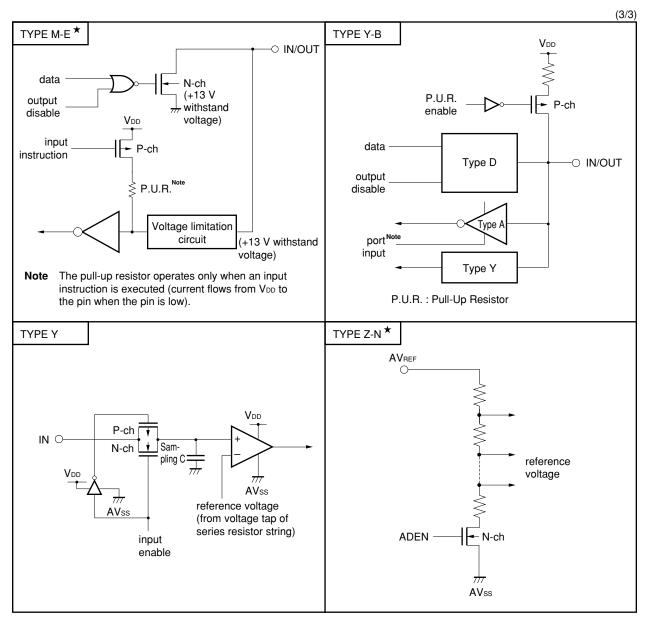
3.2 Non-port Pins (2/2)

Pin name	I/O	Alternate function	Function	Status after reset	I/O circuit type
S12 to S23	Output	_	Segment signal output	Note 1	G-A
S24 to S31	Output	BP0 to BP7	Segment signal output	Note 1	H-A
COM0 to COM3	Output	_	Common signal output	Note 1	G-B
VLC0 to VLC2	_	_	Power source for LCD driver	_	_
BIAS	Output	_	Output for external split resistor cut	High impedance	_
LCDCLNote 2	Output	P30/MD0	Clock output for driving external expansion driver	Input	E-B
SYNC ^{Note 2}	Output	P31/MD1	Clock output for synchronization of external expansion driver	Input	E-B
AN0 to AN5	Input	_	Analog signal input for A/D converter	Input	Υ
AN6		P82			Y-B
AN7		P83			
AVREF	_	_	A/D converter reference voltage	_	Z-N
AVss	_	_	A/D converter reference GND potential	_	Z-N


Notes 1. The V_{LCX} (X = 0, 1, 2) shown below are selected as the input source for the display outputs. S12 to S31: V_{LC1} , COM0 to COM2: V_{LC2} , COM3: V_{LC0}


2. These pins are provided for future system expansion. Currently, only P30 and P31 are used.

3.3 Pin Input/Output Circuits


The input/output circuits for the μ PD75P3036's pins are shown in schematic form below.

13

Note Becomes active when an input instruction is executed.

★ 3.4 Recommended Connection of Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss or VDD
P01/SCK	Connect to Vss or VDD via a resistor individually
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0 to P12/INT2	Connect to Vss or VDD
P13/TI0	
P20/PTO0	Input status : connect to Vss or VDD via a resistor individually.
P21/PTO1	Output status: open
P22/PTO2/PCL	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32, P33	
P40 to P43	Connect to Vss
P50 to P53	
P60/KR0 to P63/KR3	Input status : connect to Vss or VDD via a resistor individually.
P70/KR4 to P73/KR7	Output status: open
P80/TI1	
P81/Tl2	
P82/AN6	
P83/AN7	
S12 to S23	Open
S24/BP0 to S31/BP7	
COM0 to COM3	
VLC0 to VLC2	Connect to Vss
BIAS	Connect to Vss only when VLC0 to VLC2 are all not used. In other cases, leave open.
XT1 ^{Note}	Connect to Vss or VDD
XT2 ^{Note}	Open
AN0 to AN5	Connect to Vss or VDD
V _{PP}	Connect to V _{DD} directly

Note When the subsystem clock is not used, set SOS.0 to 1 (so as not to use the internal feedback resistor).

4. Mk I MODE AND Mk II MODE SELECTION FUNCTION

Setting a stack bank selection (SBS) register for the μ PD75P3036 enables the program memory to be switched between Mk I mode and Mk II mode. This function is applicable when using the μ PD75P3036 to evaluate the μ PD753036.

When the SBS bit 3 is set to 1 : sets Mk I mode (supports Mk I mode for μ PD753036) When the SBS bit 3 is set to 0 : sets Mk II mode (supports Mk II mode for μ PD753036)

4.1 Difference between Mk I Mode and Mk II Mode

Table 4-1 lists points of difference between the Mk I mode and the Mk II mode for the μ PD75P3036.

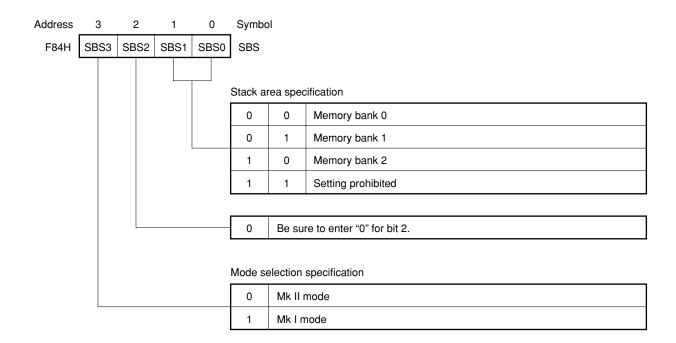
Table 4-1. Difference between Mk I Mode and Mk II Mode

	Item	Mk I Mode	Mk II Mode		
Program count	er	PC13-0			
Program memo	ory (bytes)	16384			
Data memory (bits)	768 x 4			
Stack	Stack bank	Selectable via memory banks 0 to 2			
	No. of stack bytes	2 bytes	3 bytes		
Instruction	BRA !addr1 instruction	Not available	Available		
	CALLA !addr1 instruction				
Instruction	CALL !addr instruction	3 machine cycles	4 machine cycles		
execution time CALLF !faddr instruction		2 machine cycles	3 machine cycles		
Supported mas	k ROM versions	When set to Mk I mode for μ PD753036 When set to Mk II mode for μ PD75			

★ Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL series. Therefore, this mode is effective for enhancing software compatibility with products exceeding 16 Kbytes.

When the Mk II mode is selected, the number of stack bytes used during execution of subroutine call instructions increases by one byte per stack compared to the Mk I mode. When the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by one machine cycle. Therefore, use the Mk I mode if the RAM efficiency and processing performance are more important than software compatibility.

16


4.2 Setting of Stack Bank Selection Register (SBS)

Use the stack bank selection register to switch between Mk I mode and Mk II mode. Figure 4-1 shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to $10xxB^{Note}$ at the beginning of the program. When using the Mk II mode, be sure to initialize it to $00xxB^{Note}$.

Note Set the desired value for xx.

Figure 4-1. Format of Stack Bank Selection Register

- Cautions 1. SBS3 is set to "1" after RESET input, and consequently the CPU operates in Mk I mode. When using instructions for Mk II mode, set SBS3 to "0" and set Mk II mode before using the instructions.
 - 2. When using Mk II mode, execute a subroutine call instruction and an interrupt instruction after RESET input and after setting the stack bank selection register.

5. DIFFERENCES BETWEEN μ PD75P3036 AND μ PD753036

The μ PD75P3036 replaces the internal mask ROM in the program memory of the μ PD753036 with a one-time PROM or EPROM. The μ PD75P3036's Mk I mode supports the Mk I mode in the μ PD75P3036's Mk II mode supports the Mk II mode in the μ PD753036.

Table 5-1 lists differences among the μ PD75P3036 and the μ PD753036. Be sure to check the differences among these products before using them with PROMs for debugging or prototype testing of application systems or, later, when using them with a mask ROM for full-scale production.

As to CPU function and on-chip hardware, see the User's Manual.

Table 5-1. Differences between μ PD75P3036 and μ PD753036

	Item	μ PD753036	μ PD75P3036		
Program counter		14 bits			
Program memory	(bytes)	16384	16384		
		Mask ROM	One-time PROM, EPROM		
Data memory (x 4	1 bits)	768			
Mask option	Pull-up resistor of ports 4, 5	Yes (can specify whether to incorporate on-chip or not)	No (don't incorporate on-chip)		
	Split resistor for LCD driving power supply				
	Selection of oscillation stabilization wait time	Yes (can select either $2^{17}/fx$ or $2^{15}/fx$) ^{Note}	No (fixed to 2 ¹⁵ /fx) ^{Note}		
	Selection of subsystem clock feedback resistor	Yes (can select either use enabled or use disabled)	No (use enabled)		
Pin configuration	Pin No. 29 to 32	P40 to P43	P40/D0 to P43/D3		
	Pin No. 34 to 37	P50 to P53	P50/D4 to P53/D7		
	Pin No. 50	P30/LCDCL	P30/LCDCL/MD0		
	Pin No. 51	P31/SYNC	P31/SYNC/MD1		
	Pin No. 52	P32	P32/MD2		
	Pin No. 53	P33	P33/MD3		
	Pin No. 69	IC	V _{PP}		
Other		Noise resistance and noise radiation may differ due to the different circuit sizes and mask layouts.			

Note 2¹⁷/fx is 21.8 ms during 6.0-MHz operation, and 31.3 ms during 4.19-MHz operation. 2¹⁵/fx is 5.46 ms during 6.0-MHz operation, and 7.81 ms during 4.19-MHz operation.

Caution Noise resistance and noise radiation are different in PROM and mask ROM versions. In transferring to mask ROM versions from the PROM version in a process between prototype development and full production, be sure to fully evaluate the mask ROM version's CS (not ES).

18

6. PROGRAM COUNTER (PC) AND MEMORY MAP

6.1 Program Counter (PC) ... 14 bits

This is a 14-bit binary counter that stores program memory address data.

Figure 6-1. Configuration of Program Counter

PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	PC
														l

6.2 Program Memory (PROM) ... 16384 x 8 bits

The program memory consists of 16384 x 8-bit one-time PROM or EPROM.

· Addresses 0000H and 0001H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET signal is generated are written. Reset start is possible from any address.

Addresses 0002H to 000DH

Vector table wherein the program start address and the values set for the RBE and MBE by each vectored interrupt are written. Interrupt processing can start from any address.

· Addresses 0020H to 007FH

Table area referenced by the GETI instructionNote.

Note The GETI instruction realizes a 1-byte instruction on behalf of any 2-byte/3-byte instruction, or two 1-byte instructions. It is used to decrease the number of program steps.

Figure 6-2 shows the addressing ranges for the program memory, branch instruction and the subroutine call instruction.

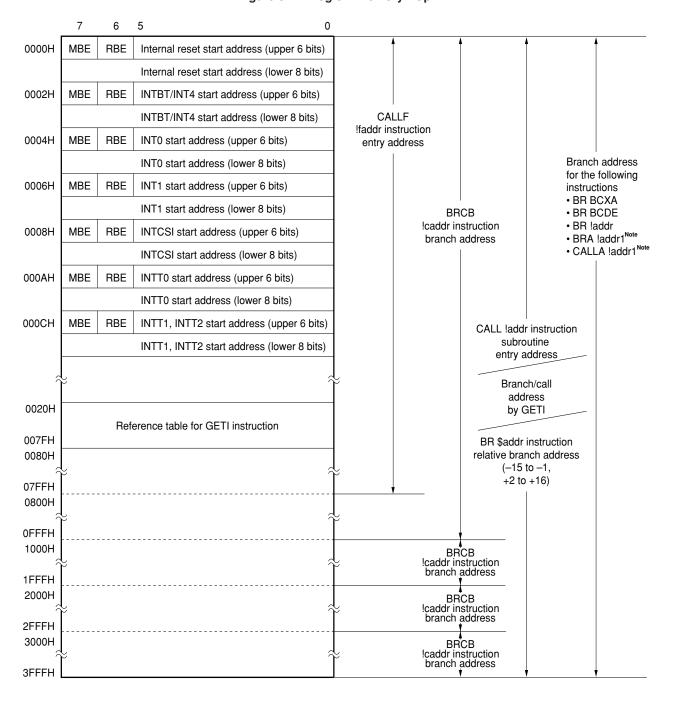


Figure 6-2. Program Memory Map

★ Note Can be used only in the Mk II mode.

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

6.3 Data Memory (RAM) ... 768 x 4 bits

Figure 6-3 shows the data memory configuration.

Data memory consists of a data area and a peripheral hardware area. The data area consists of 768 x 4-bit static RAM.

Data memory Memory bank 000H General-purpose register area (32×4) 01FH 020H 0 256 x 4 (224×4) 0FFH 100H 256 x 4 (236×4) 1EBH 1ECH Display data memory (20×4) 1FFH 200H Data area static RAM (768×4) 256 x 4 2 Stack area Note 2FFH Not incorporated F80H Peripheral hardware area 128 x 4 15 FFFH

Figure 6-3. Data Memory Map

Note Memory bank 0, 1, or 2 can be selected as the stack area.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, see the **RA75X Assembler Package User's Manual—Language** (**EEU-1363**)). When there are several codes, select and use just one. Codes that consist of uppercase letters and + or – symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (for further description, see the **User's Manual**). The number of labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL-, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr	0000H-3FFFH immediate data or label
addr1	0000H-3FFFH immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (however, bit0 = 0) or label
PORTn	PORT0-PORT8
IEXXX	IEBT, IECSI, IET0-IET2, IE0-IE2, IE4, IEW
RBn	RB0-RB3
MBn	MB0-MB2, MB15

Note When processing 8-bit data, only even-numbered addresses can be entered.

(2) Operation legend

A : A register; 4-bit accumulator

B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register

XA : Register pair (XA); 8-bit accumulator

BC : Register pair (BC)
DE : Register pair (DE)
HL : Register pair (HL)

XA' : Expansion register pair (XA')
BC' : Expansion register pair (BC')
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')

PC: Program counter SP: Stack pointer

CY : Carry flag; bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag

PORTn : Port n (n = 0 to 8)

IME : Interrupt master enable flagIPS : Interrupt priority selection register

IEXXX : Interrupt enable flag

RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
. : Delimiter for address and bit
(XX) : The contents addressed by XX

XXH : Hexadecimal data

(3) Description of symbols used in addressing area

*1	MB = MBE • MBS	1
'	MBS = 0-2, 15	
*2	MB = 0	
	MBE = 0 : MB = 0 (000H-07FH)	
*3	MB = 15 (F80H-FFFH)	Data memory addressing
3	MBE = 1 : MB = MBS	
	MBS = 0-2, 15	
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	_
*6	addr = 0000H-3FFFH	†
*7	addr, addr1 = (Current PC) -15 to (Current PC) -1	
/	(Current PC) +2 to (Current PC) +16	
	caddr = 0000H-0FFFH (PC13, $12 = 00B$: Mk I or Mk II mode) or	
	1000H-1FFFH (PC _{13, 12} = 01B: Mk I or Mk II mode) or	Program memory
*8	2000H-2FFFH (PC _{13, 12} = 10B: Mk I or Mk II mode) or	addressing
	3000H-3FFFH (PC _{13, 12} = 11B: Mk I or Mk II mode)	
*9	faddr = 0000H-07FFH	
*10	taddr = 0020H-007FH	
*11	addr1 = 0000H-3FFFH	

Remarks 1. MB indicates access-enabled memory banks.

- 2. In area *2, MB = 0 for both MBE and MBS.
- 3. In areas *4 and *5, MB = 15 for both MBE and MBS.
- 4. Areas *6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- Skipped instruction is 1-byte or 2-byte instruction S=1

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tc $_{\text{Y}}$) of the CPU clock Φ . Use the PCC setting to select among four cycle times.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, #n4	1	1	A<-n4		String-effect A
		reg1, #n4	2	2	reg1<-n4		
		XA, #n8	2	2	XA<-n8		String-effect A
		HL, #n8	2	2	HL<-n8		String-effect B
		rp2, #n8	2	2	rp2<-n8		
		A, @HL	1	1	A<-(HL)	*1	
		A, @HL+	1	2+S	A<-(HL), then L<-L+1	*1	L=0
		A, @HL-	1	2+S	A<-(HL), then L<-L-1	*1	L=FH
		A, @rpa1	1	1	A<-(rpa1)	*2	
		XA, @HL	2	2	XA<-(HL)	*1	
		@HL, A	1	1	(HL)<-A	*1	
		@HL, XA	2	2	(HL)<-XA	*1	
		A, mem	2	2	A<-(mem)	*3	
		XA, mem	2	2	XA<-(mem)	*3	
		mem, A	2	2	(mem)<-A	*3	
		mem, XA	2	2	(mem)<-XA	*3	
		A, reg1	2	2	A<-reg1		
		XA, rp'	2	2	XA<-rp'		
		reg1, A	2	2	reg1<-A		
		rp'1, XA	2	2	rp'1<-XA		
	XCH	A, @HL	1	1	A<->(HL)	*1	
		A, @HL+	1	2+S	A<->(HL), then L<-L+1	*1	L=0
		A, @HL-	1	2+S	A<->(HL), then L<-L-1	*1	L=FH
		A, @rpa1	1	1	A<->(rpa1)	*2	
		XA, @HL	2	2	XA<->(HL)	*1	
		A, mem	2	2	A<->(mem)	*3	
		XA, mem	2	2	XA<->(mem)	*3	
		A, reg1	1	1	A<->reg1		
		XA, rp'	2	2	XA<->rp'		
Table	MOVT	XA, @PCDE	1	3	XA<-(PC13-8+DE)ROM		
reference		XA, @PCXA	1	3	XA<-(PC13-8+XA)ROM		
		XA, @BCDE	1	3	XA<-(BCDE)ROM ^{Note}	*6	
		XA, @BCXA	1	3	XA<-(BCXA)ROM ^{Note}	*6	

Note Only the lower 2 bits in the B register are valid.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	CY<-(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-(H+mem3-0.bit)	*1	
		fmem.bit, CY	2	2	(fmem.bit)<-CY	*4	
		pmem.@L, CY	2	2	(pmem7-2+L3-2.bit(L1-0))<-CY	*5	
		@H+mem.bit, CY	2	2	(H+mem3-0.bit)<-CY	*1	
Arithmetic/	ADDS	A, #n4	1	1+S	A<-A+n4		carry
logical		XA, #n8	2	2+S	XA<-XA+n8		carry
operation		A, @HL	1	1+S	A<-A+(HL)	*1	carry
		XA, rp'	2	2+S	XA<-XA+rp'		carry
		rp'1, XA	2	2+S	rp'1<-rp'1+XA		carry
	ADDC	A, @HL	1	1	A, CY<-A+(HL)+CY	*1	
		XA, rp'	2	2	XA, CY<-XA+rp'+CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1+XA+CY		
	SUBS	A, @HL	1	1+S	A<-A-(HL)	*1	borrow
		XA, rp'	2	2+S	XA<-XA-rp'		borrow
		rp'1, XA	2	2+S	rp'1<-rp'1-XA		borrow
	SUBC	A, @HL	1	1	A, CY<-A-(HL)-CY	*1	
		XA, rp'	2	2	XA, CY<-XA-rp'-CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1–XA–CY		
	AND	A, #n4	2	2	A<-A^n4		
		A, @HL	1	1	A<-A^(HL)	*1	
		XA, rp'	2	2	XA<-XA^rp'		
		rp'1, XA	2	2	rp'1<-rp'1^XA		
	OR	A, #n4	2	2	A<-Avn4		
		A, @HL	1	1	A<-Av(HL)	*1	
		XA, rp'	2	2	XA<-XAvrp'		
		rp'1, XA	2	2	rp'1<-rp'1vXA		
	XOR	A, #n4	2	2	A<-A v n4		
		A, @HL	1	1	A<-A v (HL)	*1	
		XA, rp'	2	2	XA<-XA ∀ rp'		
		rp'1, XA	2	2	rp'1<-rp'1VXA		
Accumulator	RORC	A	1	1	CY<-A0, A3<-CY, An-1<-An		
manipulation	NOT	A	2	2	A<-Ā		
Increment/	INCS	reg	1	1+S	reg<-reg+1		reg=0
decrement		rp1	1	1+S	rp1<-rp1+1		rp1=00H
		@HL	2	2+S	(HL)<-(HL)+1	*1	(HL)=0
		mem	2	2+S	(mem)<-(mem)+1	*3	(mem)=0
	DECS	reg	1	1+S	reg<-reg-1		reg=FH
		rp'	2	2+S	rp'<-rp'-1		rp'=FFH

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Comparison	SKE	reg, #n4	2	2+S	Skip if reg=n4		reg=n4
		@HL, #n4	2	2+S	Skip if(HL)=n4	*1	(HL)=n4
		A, @HL	1	1+S	Skip if A=(HL)	*1	A=(HL)
		XA, @HL	2	2+S	Skip if XA=(HL)	*1	XA=(HL)
		A, reg	2	2+S	Skip if A=reg		A=reg
		XA, rp'	2	2+S	Skip if XA=rp'		XA=rp'
Carry flag	SET1	CY	1	1	CY<-1		
manipulation	CLR1	CY	1	1	CY<-0		
	SKT	CY	1	1+S	Skip if CY=1		CY=1
	NOT1	CY	1	1	CY<-CY		
Memory bit	SET1	mem.bit	2	2	(mem.bit)<-1	*3	
manipulation		fmem.bit	2	2	(fmem.bit)<-1	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))<-1	*5	
		@H+mem.bit	2	2	(H+mem3-0.bit)<-1	*1	
	CLR1	mem.bit	2	2	(mem.bit)<-0	*3	
		fmem.bit	2	2	(fmem.bit)<-0	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))<-0	*5	
		@H+mem.bit	2	2	(H+mem3-0.bit)<-0	*1	
	SKT	mem.bit	2	2+S	Skip if(mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if(fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem ₃₋₀ .bit)=1	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	2+S	Skip if(mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if(fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if(H+mem ₃₋₀ .bit)=0	*1	(@H+mem.bit)=0
	SKTCLR	fmem.bit	2	2+S	Skip if(fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit (L1-0))=1 and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=1 and clear	*1	(@H+mem.bit)=1
	AND1	CY, fmem.bit	2	2	CY<-CY^(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CY^(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CY^(H+mem3-0.bit)	*1	
	OR1	CY, fmem.bit	2	2	CY<-CYv(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CYv(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CYv(H+mem3-0.bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY<-CY+ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<- CY v (pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CY v (H+mem₃-o.bit)	*1	

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch	BRNote 1	addr	_	_	PC13-0<-addr Use the assembler to select the most appropriate instruction among the following. • BR !addr • BRCB !caddr • BR \$addr	*6	
		addr1	_	_	PC13-0<-addr1 Use the assembler to select the most appropriate instruction among the following. • BRA !addr1 • BR laddr • BRCB !caddr • BR \$addr1	*11	
		!addr	3	3	PC13-0<-addr	*6	
		\$addr	1	2	PC13-0<-addr	*7	
		\$addr1	1	2	PC13-0<-addr1		
		PCDE	2	3	PC13-0<-PC13-8+DE		
		PCXA	2	3	PC13-0<-PC13-8+XA		
		BCDE	2	3	PC13-0<-BCDENote 2	*6	
		BCXA	2	3	PC13-0<-BCXANote 2	*6	
	BRANote 1	!addr1	3	3	PC13-0<-addr1	*11	
	BRCB	!caddr	2	2	PC13-0<-PC13, 12+caddr11-0	*8	

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

2. Only the lower 2 bits in the B register are valid.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	CALLANote	!addr1	3	3	(SP-6)(SP-3)(SP-4)<-PC11-0	*11	
stack control					(SP-5)<-0, 0, PC13, 12		
					(SP-2)<-X, X, MBE, RBE		
					PC13-0<-addr1, SP<-SP-6		
	CALLNote	!addr	3	3	(SP-4)(SP-1)(SP-2)<-PC ₁₁₋₀	*6	
					(SP-3)<-MBE, RBE, PC13, 12		
					PC13-0<-addr, SP<-SP-4		
				4	(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-5)<-0, 0, PC13, 12		
					(SP-2)<-X, X, MBE, RBE		
					PC13-0<-addr, SP<-SP-6		
	CALLFNote	!faddr	2	2	(SP-4)(SP-1)(SP-2)<-PC11-0	*9	
					(SP-3)<-MBE, RBE, PC13, 12		
					PC13-0<-000+faddr, SP<-SP-4		
				3	(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-5)<-0, 0, PC13, 12		
					(SP-2)<-X, X, MBE, RBE		
					PC13-0<-000+faddr, SP<-SP-6		
	RET ^{Note}		1	3	MBE, RBE, PC13, 12<-(SP+1)		
					PC11-0<-(SP)(SP+3)(SP+2)		
					SP<-SP+4		
					X, X, MBE, RBE<-(SP+4)		
					PC ₁₁₋₀ <-(SP)(SP+3)(SP+2)		
					0, 0, PC13, 12<-(SP+1)		
					SP<-SP+6		
	RETSNote		1	3+S	MBE, RBE, PC13, 12<-(SP+1)		Unconditional
					PC11-0<-(SP)(SP+3)(SP+2)		
					SP<-SP+4		
					then skip unconditionally		
					X, X, MBE, RBE<-(SP+4)		
					PC ₁₁₋₀ <-(SP)(SP+3)(SP+2)		
					0, 0, PC13, 12<-(SP+1)		
					SP<-SP+6		
					then skip unconditionally		
	RETI ^{Note}		1	3	MBE, RBE, PC13, 12<-(SP+1)	_	
					PC11-0<-(SP)(SP+3)(SP+2)		
					PSW<-(SP+4)(SP+5), SP<-SP+6		
					0, 0, PC13, 12<-(SP+1)	\exists	
					PC11-0<-(SP)(SP+3)(SP+2)		
					PSW<-(SP+4)(SP+5), SP<-SP+6		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	PUSH	rp	1	1	(SP-1)(SP-2)<-rp, SP<-SP-2		
stack control		BS	2	2	(SP-1)<-MBS, (SP-2)<-RBS, SP<-SP-2		
	POP	rp	1	1	rp<-(SP+1)(SP), SP<-SP+2		
		BS	2	2	MBS<-(SP+1), RBS<-(SP), SP<-SP+2		
Interrupt	EI		2	2	IME(IPS.3)<-1		
control		IEXXX	2	2	IEXXX<-1		
	DI		2	2	IME(IPS.3)<-0		
		IEXXX	2	2	IEXXX<-0		
I/O	INNote 1	A, PORTn	2	2	A<-PORTn (n=0-8)		
		XA, PORTn	2	2	XA<-PORTn+1, PORTn (n=4, 6)		
	OUTNote 1	PORTn, A	2	2	PORTn<-A (n=2-8)		
		PORTn, XA	2	2	PORTn+1, PORTn<-XA (n=4, 6)		
CPU control	HALT		2	2	Set HALT Mode(PCC.2<-1)		
	STOP		2	2	Set STOP Mode(PCC.3<-1)	*10	
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS<-n (n=0-3)		
		MBn	2	2	MBS<-n (n=0-2, 15)		
	GETINote 2, 3	taddr	1	3	When using TBR instruction		
					PC13-0<-(taddr)5-0+(taddr+1)		
					When using TCALL instruction		
					(SP-4)(SP-1)(SP-2)<-PC ₁₁₋₀		
					(SP-3)<-MBE, RBE, PC13, 12		
					PC13-0<-(taddr)5-0+(taddr+1)		
					SP<-SP-4		
					When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instruction		Determined by referenced instruction
			1	3	When using TBR instruction	*10	
					PC13-0<-(taddr)5-0+(taddr+1)		
				4	When using TCALL instruction	-	
					(SP-6)(SP-3)(SP-4)<-PC ₁₁₋₀		
					(SP-5)<-MBE, RBE, PC13, 12		
					(SP-2)<-X, X, MBE, RBE		
					PC13-0<-(taddr)5-0+(taddr+1)		
					SP<-SP-6		
				3	When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instruction	-	Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.

- 2. TBR and TCALL instructions are assembler pseudo-instructions for the GETI instruction's table definitions.
- **3.** The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

8. PROM (PROGRAM MEMORY) WRITE AND VERIFY

The μ PD75P3036 contains a 16384 x 8-bit PROM as a program memory. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the X1 pin is used instead of address input as a method for updating addresses.

Pin	Function
V _{PP}	Pin where program voltage is applied during program memory write/verify (usually VDD potential)
X1, X2	Clock input pins for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.
MD0 to MD3	Operation mode selection pin for program memory write/verify
D0/P40 to D3/P43 (lower 4 bits) D4/P50 to D7/P53 (upper 4 bits)	8-bit data I/O pins for program memory write/verify
V _{DD}	Pin where power supply voltage is applied. Applies 1.8 to 5.5 V in normal operation mode and +6 V for program memory write/verify.

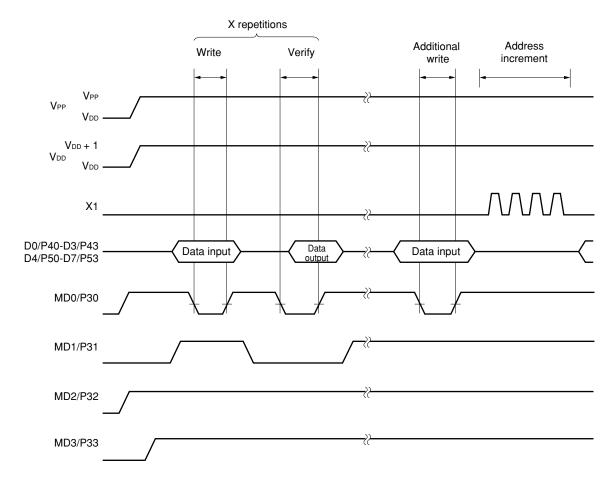
Caution Pins not used for program memory write/verify should be connected to Vss.

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the V_{DD} pin and +12.5 V to the V_{PP} pin, the μ PD75P3036 enters the program memory write/verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below.

Op	eration mod	de specif	ication			Operation mode
V _{PP}	V _{DD}	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Zero-clear program memory address
		L	Н	Н	Н	Write mode
		L	L	Н	Н	Verify mode
		Н	Х	Н	Н	Program inhibit mode

X: L or H

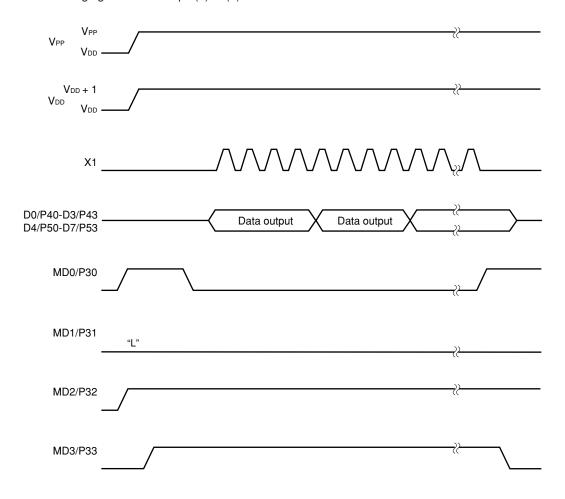


* 8.2 Program Memory Write Procedure

Program memory can be written at high speed using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Write data in the 1 ms write mode.
- (7) Select the verify mode. If the data is correct, go to step (8) and if not, repeat steps (6) and (7).
- (8) (X: number of write operations from steps (6) and (7)) x 1 ms additional write.
- (9) Apply four pulses to the X1 pin to increment the program memory address by one.
- (10) Repeat steps (6) to (9) until the end address is reached.
- (11) Select the zero-clear program memory address mode.
- (12) Return the VDD and VPP pins back to 5 V.
- (13) Turn off the power.

The following figure shows steps (2) to (9).



★ 8.3 Program Memory Read Procedure

The μ PD75P3036 can read program memory contents using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Select the verify mode. Apply four clock pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (7) Select the zero-clear program memory address mode.
- (8) Return the VDD and VPP pins back to 5 V.
- (9) Turn off the power.

The following figure shows steps (2) to (7).

★ 9. PROGRAM ERASURE (µPD75P3036KK-T ONLY)

The μ PD75P3036KK-T is capable of erasing (FFH) the data written in a program memory and rewriting.

To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm. Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the programmed data is as follows:

- UV intensity x erasure time: 15 W• s/cm² or more
- Erasure time : 15 to 20 minutes (when a UV lamp of 12000 μW/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irrradiate the ultraviolet rays after removing the filter.

★ 10. OPAQUE FILM ON ERASURE WINDOW (μPD75P3036KK-T ONLY)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, and to protect internal circuit other than EPROM from misoperating due to light radiation, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

11. ONE-TIME PROM SCREENING

Due to its structure, the one-time PROM versions (μ PD75P3036GC-3B9, μ PD75P3036GK-BE9) cannot be fully tested before shipment by NEC Electronics. Therefore, NEC Electronics recommends that after the required data is written and the PROM is stored under the temperature and time conditions shown below, the PROM should be verified via a screening.

Storage temperature	Storage time
125 °C	24 hours

★ 12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Cor	nditions	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +7.0	V
PROM supply voltage	V _{PP}			-0.3 to +13.5	V
Input voltage	VII	Other than ports 4, 5		-0.3 to V _{DD} +0.3	V
	Vı2	Ports 4, 5	N-ch open drain	-0.3 to +14	V
Output voltage	Vo		•	-0.3 to V _{DD} +0.3	V
High-level output current	Іон	Per pin		-10	mA
		Total of all pins		-30	mA
Low-level output current	loL	Per pin		30	mA
		Total of all pins		200	mA
Operating ambient temperature	Та			-40 to +85 ^{Note}	°C
Storage temperature	Tstg			−65 to +150	°C

Note To drive LCD at 1.8 V \leq V_{DD} < 2.7 V, T_A = -10 to +85 °C

Caution If the absolute maximum ratings of even one of the parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are therefore values which, when exceeded, can cause the product to be damaged. Be sure that these values are never exceeded when using the product.

Capacitance (T_A = 25 $^{\circ}$ C, V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	pF

Main System Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Oscillation frequency (fx) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
	C1 C2	Oscillation stabilization time ^{Note 3}	After V _{DD} has reached MIN. value of oscillation voltage range			4	ms
Crystal resonator	X1 X2 C2	Oscillation frequency (fx) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		Oscillation stabilization time ^{Note 3}	V _{DD} = 4.5 to 5.5 V			10	ms
						30	
External clock	X1 X2	X1 input frequency (fx) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
	A	X1 input high-, low-level widths (txH, txL)		83.3		500	ns

- **Notes 1.** The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
 - 2. If the oscillation frequency is 4.19 MHz < fx \leq 6.0 MHz at 1.8 V \leq V_{DD} < 2.7 V, do not select the processor clock control register (PCC) = 0011. If PCC = 0011, one machine cycle time is less than 0.95 μ s, falling short of the rated value of 0.95 μ s.
 - 3. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied or STOP mode has been released.

Caution When using the main system clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- · Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as V_{DD}.
- · Do not ground to a power supply pattern through which a high current flows.
- · Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2	Oscillation frequency (fxT)Note 1		32	32.768	35	kHz
	C3 C4	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V		1.0	2	S
	VDD					10	
External clock	XT1 XT2	XT1 input frequency (f _{XT})Note 1		32		100	kHz
	*	XT1 input high-, low-level widths (txth, txtl)		5		15	μѕ

- **Notes 1.** The oscillation frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
 - 2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.

Caution When using the subsystem clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- · Keep the wiring length as short as possible.
- · Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VDD.
- Do not ground to a power supply pattern through which a high current flows.
- · Do not extract signals from the oscillation circuit.

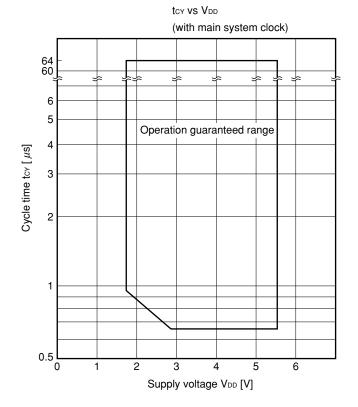
The subsystem clock oscillation circuit has a low amplification factor to reduce current dissipation and is more susceptible to noise than the main system clock oscillation circuit. Therefore, exercise utmost care in wiring the subsystem clock oscillation circuit.

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions	5	MIN.	TYP.	MAX.	Unit
Low-level output	loL	Per pin					15	mA
current		Total of all	pins				120	mA
High-level input	V _{IH1}	Ports 2, 3,	P82, P83	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.7 V _{DD}		V _{DD}	V
voltage				1.8 V ≤ V _{DD} < 2.7 V	0.9 V _{DD}		V _{DD}	V
	V _{IH2}	Ports 0, 1,	6, 7, P80, P81,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.8 V _{DD}		V _{DD}	V
		RESET		1.8 V ≤ V _{DD} < 2.7 V	0.9 V _{DD}		V _{DD}	V
	V _{IH3}	Ports 4, 5	N-ch open drain	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.7 V _{DD}		13	V
				1.8 V ≤ V _{DD} < 2.7 V	0.9 V _{DD}		13	V
	V _{IH4}	X1, XT1			V _{DD} -0.1		V _{DD}	V
Low-level input	V _{IL1}	Ports 2, 3,	4, 5, P82, P83	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3 V _{DD}	V
voltage				1.8 V ≤ V _{DD} < 2.7 V	0		0.1 V _{DD}	V
	V _{IL2}	Ports 0, 1,	6, 7, P80, P81,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.2 V _{DD}	V
		RESET		1.8 V ≤ V _{DD} < 2.7 V	0		0.1 V _{DD}	V
	V _{IL3}	X1, XT1			0		0.1	V
High-level output	Vон	SCK, SO, p	oorts 2, 3, 6, 7, 8, E	3P0 to BP7	V _{DD} -0.5			V
voltage		Iон = −1 m/	A					
Low-level output	V _{OL1}	SCK, SO, p	oorts 2 to 8,	IoL = 15 mA		0.2	2.0	V
voltage		BP0 to BP7		V _{DD} = 4.5 to 5.5 V				
				IoL = 1.6 mA			0.4	V
	V _{OL2}	SB0, SB1	N-ch open drain				0.2 V _{DD}	V
			Pull-up resistor ≥	1 kΩ				
High-level input	ILIH1	VIN = VDD	Pins other than X				3	μΑ
leakage current	I _{LIH2}		X1, XT1				20	μΑ
	Ішнз	Vin = 13 V	Ports 4, 5 (N-ch of	open drain)			20	μΑ
Low-level input	ILIL1	Vin = 0 V	Pins other than p	orts 4, 5, X1, XT1			-3	μΑ
leakage current	ILIL2		X1, XT1				-20	<i>μ</i> Α
			Ports 4, 5 (N-ch of	open drain)			-3	<i>μ</i> Α
			When input instru	iction is not executed				·
	ILIL3		Ports 4, 5 (N-ch				-30	μΑ
			open drain)	V _{DD} = 5 V		-10	-27	<i>μ</i> Α
			When input instruc- tion is executed	V _{DD} = 3 V		-3	-8	<i>μ</i> Α
High-level output	Ісонт	Vout = Vdd		31, ports 2, 3, 6, 7, 8,			3	<i>μ</i> Α
leakage current			BP0 to BP7	.,				<i>'</i>
	ILOH2	Vout = 13 V		open drain)			20	μΑ
Low-level output	ILOL	Vout = 0 V	, = ()	. ,			-3	μΑ
leakage current								<i>'</i>
Internal pull-up	R _{L1}	VIN = 0 V	Ports 0 to 3, 6 to	8 (except pin P00)	50	100	200	kΩ
resistor				- (- c-p-p-p				
55/5/5/								

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Co	onditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD	VAC0 = 0		-40 to + 8	85 °C	2.7		V _{DD}	V
				-10 to + 8	85 °C	2.2		V _{DD}	V
		VAC0 = 1				1.8		V _{DD}	V
VAC current ^{Note 1}	Ivac	VAC0 = 1, \	/DD = 2.0 V	±10 %			1	4	μΑ
LCD output voltage	Vodc	lo = ±1.0 μA	VLCDO = VI	LCD		0		±0.2	V
deviation ^{Note 2}			VLCD1 = VI	LCD imes 2/3					
(common)			VLCD2 = VI	LCD × 1/3					
LCD output voltage	Vods	$lo = \pm 0.5 \ \mu A$	1.8 V ≤ V	LCD $\leq V_{DD}^{No}$	te 1	0		±0.2	V
deviation ^{Note 2}									
(segment)									
Supply currentNotes 1, 3	I _{DD1}	6.00 MHz ^{Note 4}	V _{DD} = 5.0	V ±10 %No	te 5		3.5	10.5	mA
		crystal oscillation	V _{DD} = 3.0	V ±10 %No	te 6		0.86	2.5	mA
	I _{DD2}	C1 = C2	HALT	V _{DD} = 5.0	V ±10 %		0.9	2.7	mA
		= 22 pF	mode	V _{DD} = 3.0	V ±10 %		0.5	1.0	mA
	I _{DD1}	4.19 MHzNote 4	V _{DD} = 5.0	V ±10 %No	te 5		2.7	8.1	mA
		crystal oscillation	V _{DD} = 3.0	V ±10 %No	te 6		0.33	1.0	mA
	I _{DD2}	C1 = C2	HALT	V _{DD} = 5.0	V ±10 %		0.7	2.0	mA
		= 22 pF	mode	V _{DD} = 3.0	V ±10 %		0.3	0.9	mA
	IDD3	32.768	Low-	V _{DD} = 3.0	V ±10 %		45	135	μΑ
		kHzNote 7	voltage	V _{DD} = 2.0	V ±10 %		22	66	μΑ
		crystal	modeNote 8	V _{DD} = 3.0	$V, T_A = 25 ^{\circ}C$		45	90	μΑ
		oscillation	Low current dissipation	V _{DD} = 3.0	V ±10 %		43	129	μΑ
			mode ^{Note 9}	V _{DD} = 3.0	V, T _A = 25 °C		43	86	μΑ
	I _{DD4}		HALT	Low-	V _{DD} = 3.0 V ±10 %		8.5	25	μΑ
			mode	voltage	V _{DD} = 2.0 V ±10 %		3.0	9.0	μΑ
				mode ^{Note 8}	V _{DD} = 3.0 V, T _A = 25 °C		8.5	17	μΑ
				Low current dissipation	V _{DD} = 3.0 V ±10 %		4.6	13.8	μΑ
				mode ^{Note 9}	V _{DD} = 3.0 V, T _A = 25 °C		4.6	9.2	μΑ
	I _{DD5}	XT1 =	V _{DD} = 5.0	V ±10 %	,		0.05	10	μΑ
		0 V ^{Note 10}	VDD = 3.0	V ±10 %			0.02	5.0	μΑ
		STOP mode			T _A = 25 °C		0.02	3.0	μΑ


- **Notes 1.** Clear VAC0 to 0 in the low current dissipation mode and STOP mode. When VAC0 is set to 1, the current increases by about 1 μ A.
 - 2. Voltage deviation is the difference between the ideal values (V_{LCDn} ; n = 0, 1, 2) of the segment and common outputs and the output voltage.
 - 3. The current flowing through the internal pull-up resistor is not included.
 - 4. Including the case when the subsystem clock oscillates.
 - **5.** When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
 - **6.** When the device operates in low-speed mode with PCC set to 0000.
 - 7. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
 - 8. When the sub-oscillation circuit control register (SOS) is set to 0000.
 - 9. When SOS is set to 0010.
 - **10.** When SOS is set to 00×1, and the feedback resistor of the sub-oscillation circuit is not used (x : don't care).

AC Characteristics (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
CPU clock cycle time ^{Note 1}	tcy	Operates with	V _{DD} = 2.7 to 5.5 V	0.67		64	μs
(minimum instruction		main system clock		0.95		64	μs
execution time = 1		Operates with		114	122	125	μs
machine cycle)		subsystem clock					
TI0, TI1, TI2 input frequency	fτι	V _{DD} = 2.7 to 5.5 \	/	0		1.0	MHz
				0		275	kHz
TI0, TI1, TI2 high-, low-level	tтін, tтіL	V _{DD} = 2.7 to 5.5 \	/	0.48			μs
widths				1.8			μs
Interrupt input high-,	tinth, tintl	INT0	IM02 = 0	Note 2			μs
low-level widths			IM02 = 1	10			μs
		INT1, 2, 4		10			μs
		KR0 to KR7		10			μs
RESET low-level width	trsl			10			μs

- Notes 1. The cycle time of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC), and processor clock control register (PCC).
 - The figure on the right shows the supply voltage V_{DD} vs. cycle time toy characteristics when the device operates with the main system clock.
 - 2. 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).

Serial transfer operation

2-wire and 3-wire serial I/O modes (SCK ··· internal clock output): (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	/	1300			ns
				3800			ns
SCK high-, low-level widths	tkl1,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	/	tkcy1/2-50			ns
	t _{KH1}			tксү1/2-150			ns
SI ^{Note 1} setup time (to SCK ↑)	tsik1	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	/	150			ns
				500			ns
SI ^{Note 1} hold time	tksi1	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	/	400			ns
(from SCK ↑)				600			ns
$\overline{\operatorname{SCK}} \downarrow \to \operatorname{SO}^{\operatorname{Note 1}}$ output	tkso1	$R_L = 1 \text{ k}\Omega, \text{ Note 2}$	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		250	ns
delay time		C _L = 100 pF		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

2-wire and 3-wire serial I/O modes (\overline{SCK} ··· external clock input): (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V	800			ns
			3200			ns
SCK high-, low-level widths	tĸL2,	V _{DD} = 2.7 to 5.5 V	400			ns
	t _{KH2}		1600			ns
SI ^{Note 1} setup time (to SCK ↑)	tsik2	V _{DD} = 2.7 to 5.5 V	100			ns
			150			ns
SI ^{Note 1} hold time	tksi2	V _{DD} = 2.7 to 5.5 V	400			ns
(from SCK ↑)			600			ns
$\overline{SCK} \downarrow \to SO^{Note\; 1}$ output	tkso2	$R_L = 1 \text{ k}\Omega$, Note 2 $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		300	ns
delay time		C _L = 100 pF	0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

SBI mode (\overline{SCK} ··· internal clock output (master)): (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

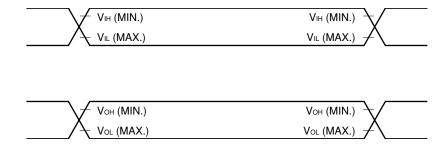
Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксүз	V _{DD} = 2.7 to 5.5 \	1	1300			ns
				3800			ns
SCK high-, low-level widths	tĸĿз,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	1	tксүз/2-50			ns
	tкнз			tксүз/2-150			ns
SB0, 1 setup time	tsıкз	V _{DD} = 2.7 to 5.5 \	/	150			ns
(to SCK ↑)				500			ns
SB0, 1 hold time (from SCK ↑)	tкsıз			tксүз/2			ns
$\overline{SCK}\downarrow \to SB0$, 1 output	tkso3	$R_L = 1 \text{ k}\Omega,$ Note	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		250	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tкsв			t KCY3			ns
SB0, 1 $\downarrow \rightarrow \overline{SCK} \downarrow$	tsвк			t KCY3			ns
SB0, 1 low-level width	tsbl		·	t KCY3			ns
SB0, 1 high-level width	tsвн			tксүз			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

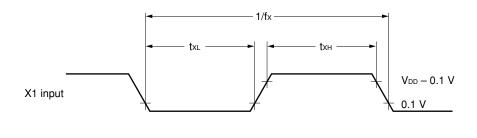
SBI mode (\overline{SCK} ··· external clock input (slave)): (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

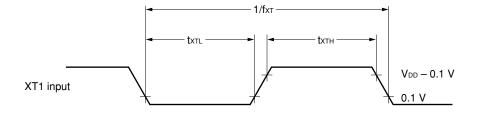
Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy4	V _{DD} = 2.7 to 5.5 \	/	800			ns
				3200			ns
SCK high-, low-level widths	tĸL4,	V _{DD} = 2.7 to 5.5 \	/	400			ns
	tkH4			1600			ns
SB0, 1 setup time	tsık4	$V_{DD} = 2.7 \text{ to } 5.5 $	/	100			ns
(to SCK ↑)				150			ns
SB0, 1 hold time (from SCK ↑)	tksi4			tkcy4/2			ns
$\overline{SCK}\downarrow \to SB0$, 1 output	tkso4	$R_L = 1 k\Omega$, Note	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		300	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tкsв			tkcy4			ns
SB0, 1 $\downarrow \rightarrow \overline{SCK} \downarrow$	tsвк			tkcy4			ns
SB0, 1 low-level width	tsbl			tkcy4			ns
SB0, 1 high-level width	tsвн			tkcy4			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

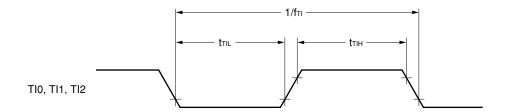

A/D Converter Characteristics (TA = -40 to +85 $^{\circ}$ C, VDD = 1.8 to 5.5 V, 1.8 V \leq AVREF \leq VDD)

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Absolute accuracyNote 1		VDD = AVREF	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			1.5	LSB
			1.8 V ≤ V _{DD} < 2.7 V			3	LSB
		$V_{DD} \neq AV_{REF}$				3	LSB
Conversion time	tconv	Note 2				168/fx	μs
Sampling time	tsamp	Note 3				44/fx	μs
Analog input voltage	VIAN			AVss		AVREF	٧
Analog input impedance	Ran				1000		$M\Omega$
AVREF current	IREF				0.25	2.0	mA

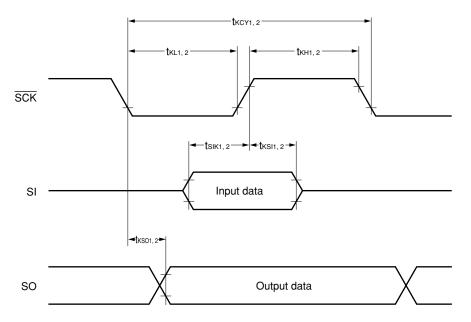

- Notes 1. Absolute accuracy excluding quantization error (±1/2LSB)
 - 2. Time until end of conversion (EOC = 1) after execution of conversion start instruction (40.1 μ s: fx = 4.19 MHz).
 - 3. Time until end of sampling after execution of conversion start instruction (10.5 μ s: fx = 4.19 MHz).

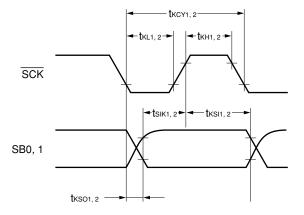


AC timing test points (except X1 and XT1 inputs)



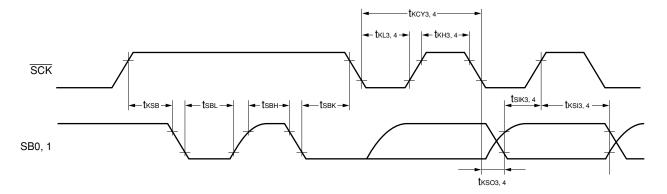
Clock timing

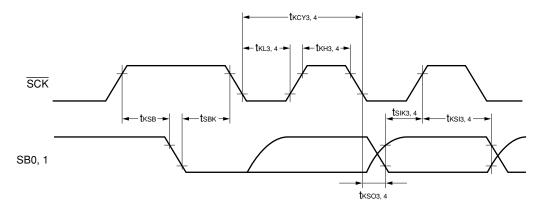

TI0, TI1, TI2 timing



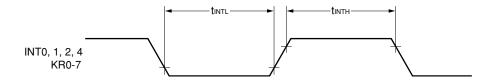
Serial transfer timing

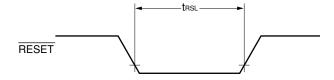
3-wire serial I/O mode


2-wire serial I/O mode



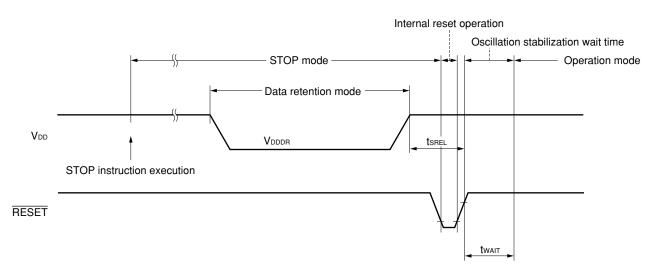
Serial transfer timing


Bus release signal transfer

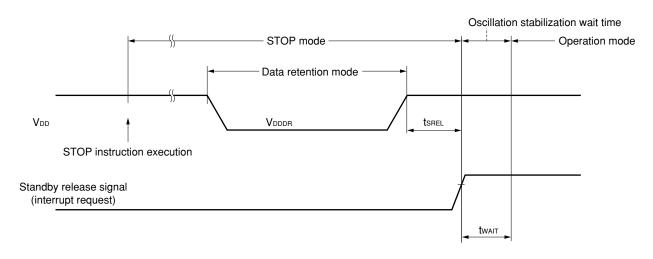

Command signal transfer

Interrupt input timing

RESET input timing


Data retention characteristics of data memory in STOP mode and at low supply voltage ($T_A = -40$ to +85 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Release signal setup time	tsrel		0			μs
Oscillation stabilization	twait	Released by RESET		2 ¹⁵ /fx		ms
wait time ^{Note 1}		Released by interrupt request		Note 2		ms


- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
 - 2. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

ВТМ3	BTM2	BTM1	BTM0	Wait Time		
DINIS	DIWZ	DINII DINO		fx = 4.19 MHz	fx = 6.0 MHz	
_	0	0	0	2 ²⁰ /fx (approx. 250 ms)	2 ²⁰ /fx (approx. 175 ms)	
_	0	1	1	2 ¹⁷ /fx (approx. 31.3 ms)	2 ¹⁷ /fx (approx. 21.8 ms)	
_	1	0	1	2 ¹⁵ /fx (approx. 7.81 ms)	2 ¹⁵ /fx (approx. 5.46 ms)	
-	1	1	1	2 ¹³ /fx (approx. 1.95 ms)	2 ¹³ /fx (approx. 1.37 ms)	

Data retention timing (when STOP mode released by RESET)

Data retention timing (standby release signal: when STOP mode released by interrupt signal)

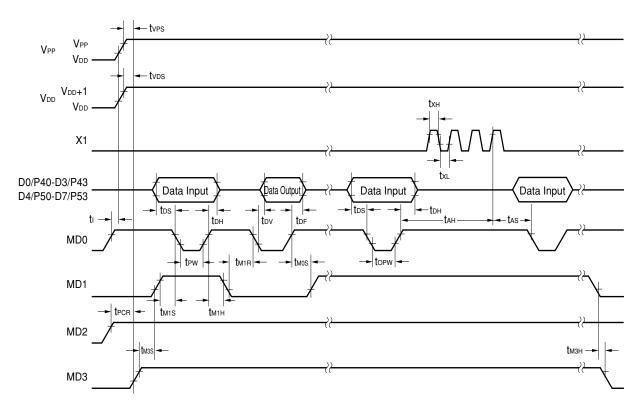
DC Programming Characteristics (TA = 25 \pm 5 °C, VdD = 6.0 \pm 0.25 V, VpP = 12.5 \pm 0.3 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	V _{IH1}	Except X1, X2	0.7 V _{DD}		V _{DD}	V
	V _{IH2}	X1, X2	V _{DD} -0.5		V _{DD}	V
Low-level input voltage	V _{IL1}	Except X1, X2	0		0.3 V _{DD}	V
	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	ILI	VIN = VIL OR VIH			10	μΑ
High-level output voltage	Vон	lон = −1 mA	V _{DD} -1.0			٧
Low-level output voltage	Vol	lo _L = 1.6 mA			0.4	V
V _{DD} supply current	IDD				30	mA
VPP supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

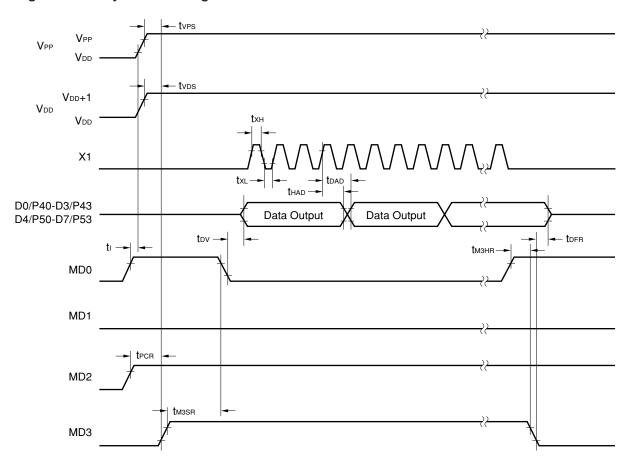
Cautions 1. Ensure that VPP does not exceed +13.5 V including overshoot.

2. VDD must be applied before VPP, and cut after VPP.

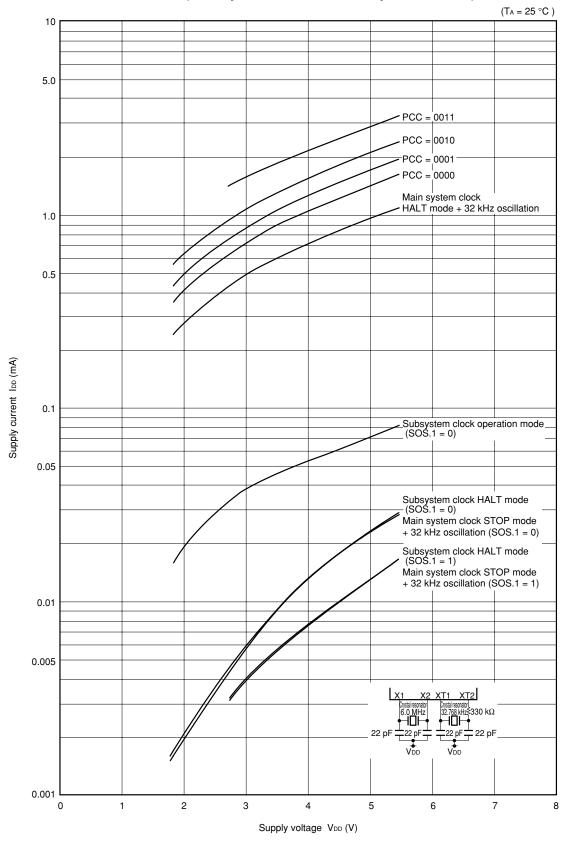
AC Programming Characteristics (TA = 25 \pm 5 °C, VDD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

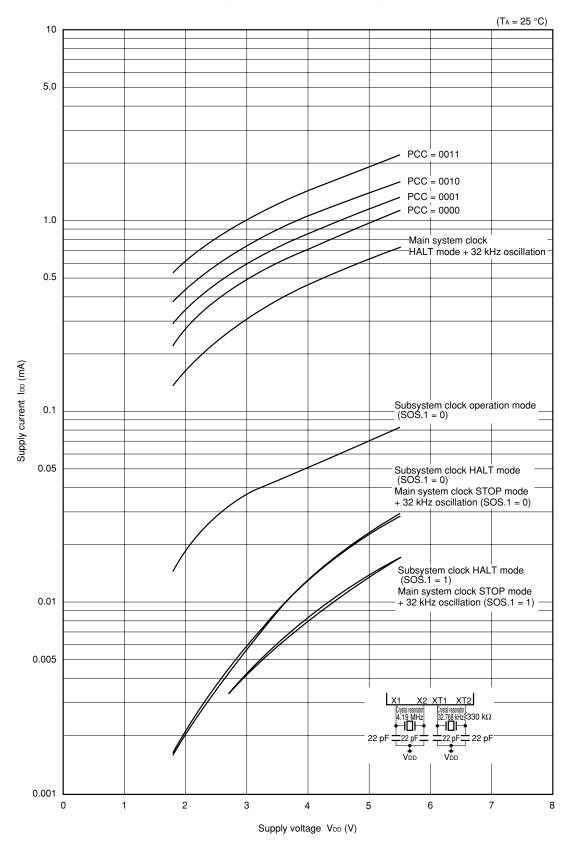

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ^{Note 2} (to MD0↓)	tas	tas		2			μs
MD1 setup time (to MD0↓)	t _{M1S}	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time ^{Note 2} (from MD0 [↑])	tан	tан		2			μs
Data hold time (from MD0↑)	tон	tон		2			μs
MD0↑→Data output float delay time	tof	tof		0		130	ns
V _{PP} setup time (to MD3 [↑])	tvps	tvps		2			μs
V _{DD} setup time (to MD3↑)	tvos	tvcs		2			μs
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1↑)	tмоs	tces		2			μs
MD0↓→Data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0↑)	t _{м1} н	tоен	tм1H + tм1R ≥ 50 μs	2			μs
MD1 recovery time (from MD0↓)	t _{M1R}	tor		2			μs
Program counter reset time	t PCR	_		10			μs
X1 input high-, low-level widths	txH, txL	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode setting time	tı	_		2			μs
MD3 setup time (to MD1↑)	tмзs	_		2			μs
MD3 hold time (from MD1↓)	tмзн	_		2			μs
MD3 setup time (to MD0↓)	t M3SR	_	Program memory read	2			μs
Data output delay time from address Note 2	tdad	tacc	Program memory read			2	μs
Data output hold time from address Note 2	thad	tон	Program memory read	0		130	μs
MD3 hold time (from MD0↑)	tмзня	_	Program memory read	2			μs
MD3↓→Data output float delay time	t DFR	_	Program memory read			2	μs

Notes 1. Symbol of corresponding μ PD27C256A

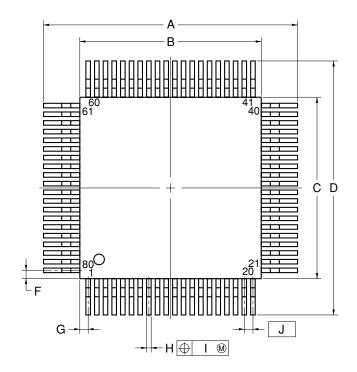

2. The internal address signal is incremented by 1 on the 4th rise of the X1 input, and is not connected to a pin.

Program Memory Write Timing

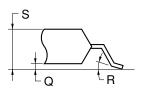

Program Memory Read Timing



★ 13. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)



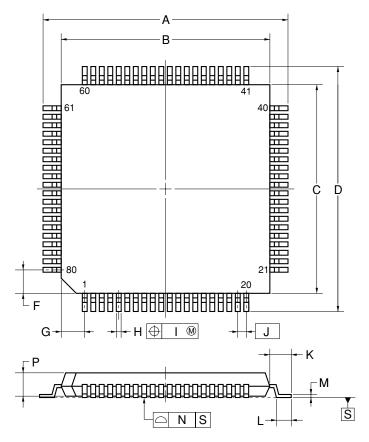
IDD vs. VDD (main system clock: 4.19-MHz crystal resonator)

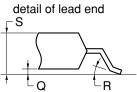


14. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

detail of lead end

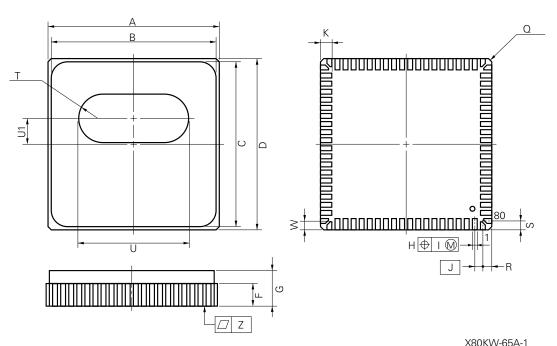

NOTE


Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.2±0.4
В	14.0±0.2
С	14.0±0.2
D	17.2±0.4
F	0.825
G	0.825
Н	0.30±0.10
I	0.13
J	0.65 (T.P.)
K	1.6±0.2
L	0.8±0.2
М	$0.15^{+0.10}_{-0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.

S80GC-65-3B9-6

80 PIN PLASTIC TQFP (FINE PITCH) (12x12)


NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.00±0.20
В	12.00±0.20
С	12.00±0.20
D	14.00±0.20
F	1.25
G	1.25
Н	$0.22^{+0.05}_{-0.04}$
1	0.10
J	0.50 (T.P.)
K	1.00±0.20
L	0.50±0.20
М	$0.145^{+0.055}_{-0.045}$
N	0.10
Р	1.05±0.07
Q	0.10±0.05
R	5°±5°
S	1.27 MAX.
	BOOOK SO DEG

P80GK-50-BE9-6

★ 80 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
		INCITES
А	14.0±0.2	0.551±0.008
В	13.6	0.535
С	13.6	0.535
D	14.0±0.2	0.551±0.008
F	1.84	0.072
G	3.6 MAX.	0.142 MAX.
Н	0.45±0.10	0.018+0.004
1	0.06	0.003
J	0.65 (T.P.)	0.024 (T.P.)
К	1.0±0.15	0.039+0.007
Q	C 0.3	C 0.012
R	0.825	0.032
S	0.825	0.032
Т	R 2.0	R 0.079
U	9.0	0.354
U1	2.1	0.083
W	0.75±0.15	0.030+0.006
Z	0.10	0.004

★ 15. RECOMMENDED SOLDERING CONDITIONS

The μ PD75P3036 should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 15-1. Surface Mounting Type Soldering Conditions (1/2)

(1) μ PD75P3036GC-3B9: 80-pin plastic QFP (14 \times 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

(2) μ PD75P3036GK-BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR35-107-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-107-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature) Exposure limit: 7 daysNote (after that, prebake at 125°C for 10 to 72 hours)	WS60-107-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions (2/2)

\star (3) μ PD75P3036GC-3B9-A: 80-pin plastic QFP (14 \times 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	For details, contact an NEC Electronics sales representative.	_
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

- Remarks 1. Products with "-A" at the end of the part number are lead-free products.
 - 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

\star (4) μ PD75P3036GK-BE9-A: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
		Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher),	IR60-107-3
	Count: Three times or less,	
	Exposure limit: 7 daysNote (after that, prebake at 125°C for 10 to 72 hours)	
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

- Remarks 1. Products with "-A" at the end of the part number are lead-free products.
 - 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

56

APPENDIX A. FUNCTION LIST OF $\mu\text{PD75336},\,753036,\,\text{AND}\,\,75\text{P3036}$

		μPD75336	μPD753036	μ PD75P3036	
ROM (bytes)		16256	16384	16384	
		Mask ROM	Mask ROM	One-time PROM, EPROM	
RAM (x 4 bits)		768			
Mk I, Mk II mo	de selection function	No Yes			
Instruction set		75X High-End	75XL		
I/O ports	Total	44			
	CMOS input	8			
	CMOS I/O	20 (4 of which can directly	drive LEDs)		
	CMOS output	8 (also used as segment pi	ns)		
	N-ch open-drain I/O	8 (can directly drive LEDs,	medium-voltage port)		
Mask options		Yes		No	
Timers		4 channels:	5 channels:		
		8-bit timer/	8-bit timer/event counters		
		event counter 2 chs (16-bit timer/event counter, carrier generator, timer with gate)			
		Basic interval timer 1 ch Basic interval timer/watchdog timer 1 ch			
		Watch timer 1 ch	Watch timer 1 ch		
Vectored interi	rupt	• External: 3	• External: 3		
		• Internal: 4	• Internal: 5		
Test input		• External: 1	External: 1		
		• Internal: 1	• Internal: 1		
Power supply	voltage	$V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$	V _{DD} = 1.8 to 5.5 V		
Instruction	When main system	0.95, 1.91, 3.81, or 15.3 μ s	• 0.95, 1.91, 3.81, or 15.3 μ	,	
execution time	clock is selected	(@ 4.19 MHz)	• 0.67, 1.33, 2.67, or 10.7 μ	us (@ 6.0 MHz)	
	When subsystem	122 μs (@ 32.768 kHz)			
clock is selected				I	
Package		80-pin plastic QFP (14 x 14 mm)		80-pin plastic QFP	
		80-pin plastic TQFP (fine p	itch) (12 x 12 mm)	(14 x 14 mm)	
				80-pin plastic TQFP	
				(fine pitch) (12 x 12 mm)	
				80-pin ceramic WQFN	

APPENDIX B. DEVELOPMENT TOOLS

The following development tools have been provided for system development using the μ PD75P3036. Use the common relocatable assembler for the series together with the device file according to the model.

	RA75X relocatable assembler	Host machine			Part No. (name)
			OS	Supply medium	
		PC-9800 Series	MS-DOS TM	3.5-inch 2HD	μS5A13RA75X
*			Ver.3.30 to	5-inch 2HD	μS5A10RA75X
		IBM PC/AT™	Refer to "OS for	3.5-inch 2HC	μS7B13RA75X
		or compatible	IBM PCs"	5-inch 2HC	μS7B10RA75X

	Device file	Host machine	Part No. (name)		
			os	Supply medium	
		PC-9800 Series	MS-DOS	3.5-inch 2HD	μS5A13DF753036
*			Ver.3.30 to Ver.6.2Note	5-inch 2HD	μS5A10DF753036
		IBM PC/AT	Refer to "OS for	3.5-inch 2HC	μS7B13DF753036
		or compatible	IBM PCs"	5-inch 2HC	μS7B10DF753036

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operations of the assembler and device file are guaranteed only when using the host machine and OS described above.

PROM Write Tools

Hardware	PG-1500	This is a PROM programmer that can program single-chip microcontroller with PROM in stand alone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter. It can also program typical PROMs in capacities ranging from 256 K to 4 Mbits.				
	PA-75P328GC	This is a PROM programmer adapter for the μ PD75P3036GC used by conne PG-1500.				
	PA-75P336GK	This is a PROM prog PG-1500.	ne μPD75P3036GK us	used by connecting to a		
	PA-75P3036KK-TNote 1	This is a PROM programmer adapter for the μ PD75P3036KK-T used by connecting a PG-1500.				
Software	PG-1500 controller	Connects PG-1500 PG-1500 on host ma		serial and parallel in	nterface and controls	
		Host machine			Part No. (name)	
			OS	Supply medium		
		PC-9800 Series	s MS-DOS 3.5-inch 2		μS5A13PG1500	
			μS5A10PG1500			
		IBM PC/AT Refer to "OS for 3.5		3.5-inch 2HD	μS7B13PG1500	
		or compatible	IBM PCs"	5-inch 2HC	μS7B10PG1500	

Notes 1. Under development

2. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described above.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P3036. Various system configurations using these in-circuit emulators are listed below.

Hardware	debugging during development of application systems using the 75X or products. For development of the μ PD75P3036, the IE-75000-R is used with optio board (IE-75300-R-EM) and emulation probe (EP-753036GC-R or EP-7 Highly efficient debugging can be performed when connected to host				75X or 75XL Series ith optional emulation or EP-753036GK-R).	
		PROM programmer. The IE-75000-R includes a connected emulation board (IE-75000-R-EM).				
	IE-75001-R	The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. The IE-75001-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753036GC-R or EP-753036GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer.				
	IE-75300-R-EMNote 2	This is an emulation board for evaluating application systems using the μ PD75P3036. It is used in combination with the IE-75000-R or IE-75001-R.				
	EP-75336GC-R	This is an emulation probe for the μ PD75P3036GC. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.				
	EV-9200GC-80	It includes an 80-pin conversion socket (EV-9200GC-80) to facilitate connections with target system.				
	EP-75336GK-R	When being used, it is connected with the IE-75000-R or IE-75000-R-EM.				
		target system.	(-			
Software	IE control program	This program can control the IE-75000-R or IE-75001-R on a host machin connected to the IE-75000-R or IE-75001-R via an RS-232-C and Centronics in				
		Host machine		I	Part No. (name)	
		DO 0000 0 :	OS NO DOG	Supply medium	0544015757	
		PC-9800 Series	MS-DOS	3.5-inch 2HD	μS5A13IE75X	
7			Ver.3.30 to Ver.6.2Note 3	5-inch 2HD	μS5A10IE75X	
		IBM PC/AT	Refer to "OS for	3.5-inch 2HC	μS7B13IE75X	
		or compatible	IBM PCs"	5-inch 2HC	μS7B10IE75X	

- **Notes 1.** This is a maintenance product.
 - **2.** The IE-75300-R-EM is sold separately.
 - 3. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.
- **Remarks 1.** Operation of the IE control program is guaranteed only when using the host machine and OS described above.
 - 2. The μ PD753036 and 75P3036 are commonly referred to as the μ PD753036 Subseries.

OS for IBM PCs

The following operating systems for the IBM PC are supported.

*

os	Version
PC DOS™	Ver.5.02 to Ver.6.3
	J6.1/V to J6.3/V
MS-DOS	Ver.5.0 to Ver.6.22
	5.0/V to 6.2/V
IBM DOS™	J5.02/V

Caution Ver. 5.0 or later includes a task swapping function, but this software is not able to use that function.

* APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Device

Document	Document No.	
	Japanese	English
μPD75P3036 Data Sheet	U11575J	U11575E (this document)
μPD753036 Data Sheet	U11353J	Planned
μPD753036 User's Manual	U10201J	U10201E
μPD753036 Instruction Table	IEM-5063	_
75XL Series Selection Guide	U10453J	U10453E

Documents Related to Development Tools

Document		Document No.		
			Japanese	English
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	EEU-1493
	EP-75336GC/GK-R User's Manual PG-1500 User's Manual		U10644J	U10644E
			EEU-651	EEU-1335
Software	RA75X Assembler Package	Operation	EEU-731	EEU-1346
	User's Manual	Language	EEU-730	EEU-1363
	PG-1500 Controller User's Manual	PC-9800 Series	EEU-704	EEU-1291
		(MS-DOS) base		
		IBM PC Series	EEU-5008	U10540E
		(PC DOS) base		

Other Related Documents

Document	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcomputer - Related Product Guide - Third Party Products -	MEI-604	_

Caution The related documents listed above are subject to change without notice. Be sure to use the latest documents for designing, etc.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España Madrid, Spain

Tel: 091-504 27 87

Succursale Française Vélizy-Villacoublay, France

Tel: 01-30-675800

Filiale Italiana

Milano, Italy Tel: 02-66 75 41

Branch The Netherlands

Eindhoven. The Netherlands Tel: 040-2654010

Tyskland Filial

Taeby, Sweden Tel: 08-63 87 200

• United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311

J05.6

MS-DOS is a trademark of Microsoft Corporation.

IBM DOS, PC DOS, and PC/AT are trademarks of International Business Machines Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
 "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).