

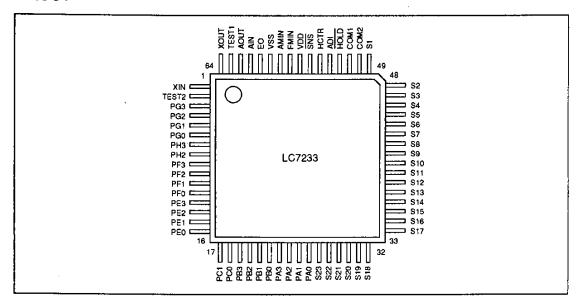
No.3802A,

LC7233

Single-chip PLL and Microcontroller with LCD Driver

OVERVIEW

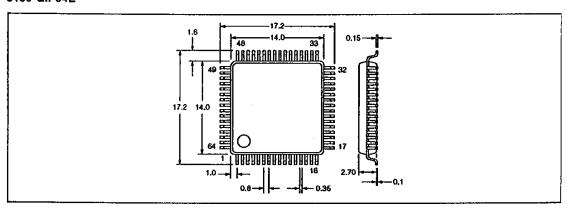
The LC7233 is a single-chip microcontroller that incorporates a phase-locked loop (PLL), which can operate up to 150 MHz, and a liquid-crystal display (LCD) driver, making it ideal for digital tuners. It has a large number of input/output ports and a frequency measurement circuit.


The LC7233 features on-chip RAM and ROM, a programmable high-speed divider, a 6-bit analog-to-digital converter and a low-voltage detection reset circuit.

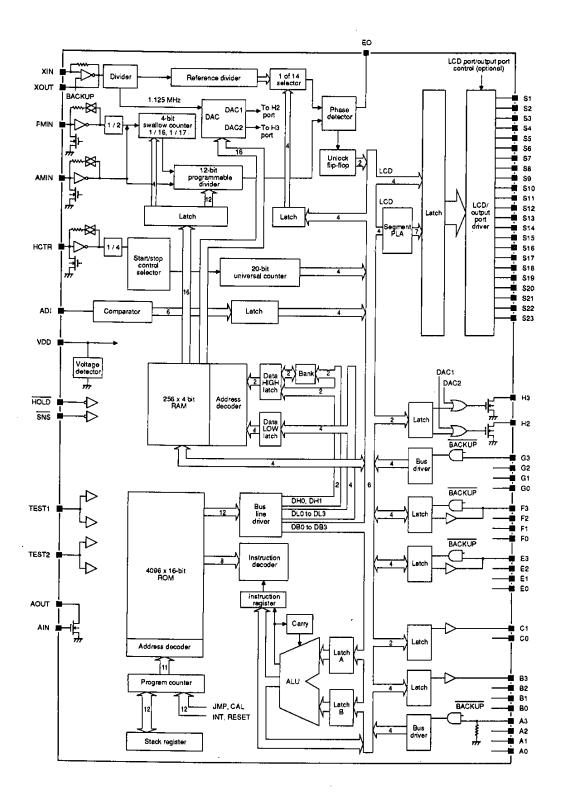
The LC7233 operates from a single 5 V supply and is available in 64-pin QIPs.

FEATURES

- · 150 MHz phase-locked loop
- LCD driver
- 6-bit analog-to-digital converter
- Two 8-bit PWM digital-to-analog converters
- Two 4-bit input ports
- Two 4-bit input/output ports
- · 6-bit keypad matrix scan output
- 2-bit open-drain high-voltage output
- 23 mask-selectable output drivers
- 20-bit universal counter
- 4096 × 16-bit program ROM (000H to FFEH user-addressable memory)
- 256×4 -bit data RAM
- · Low-voltage detection reset circuit
- Programmable high-speed divider
- Single-word instructions
- Four-level stack
- PLL-unlocked flip-flop
- Timer flip-flop
- · Programmable watchdog interrupt address
- Standby mode
- CPU operates down to 3.5 V, with data retention down to 1.3 V.
- Single 5 V supply
- 64-pin QIP


PINOUT

PACKAGE DIMENSIONS


Unit: mm

3159-QIP64E

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall;
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	Equivalent circuit	Description
1	XIN	XIN =	Crystal oscillator connections
64	XOUT	XOUT	
2	TEST2		
63	TEST1		Test pins
3 to 6	PG3 to PG0	BACKUP	Input port G
7, 8	PH1, PH0	BACKUP 	Output port H
9 to 12	PF3 to PF0	BACKUP	Input/output port F
13 to 16	PE3 to PE0		Input/output port E
17, 18	PC1, PC0		Output port C
19 to 22	PB3 to PB0	BACKUP	Output port B
23 to 26	PA3 to PA0	BACKUP	Input port A

Number	Name	Equivalent circuit	Description
27 to 49	\$23 to \$1	BACKUP	LCD segment outputs
50, 51	COM2, COM1	BACKUP	LCD common driver outputs
52	HOLD		Hold-mode control input
55	SNS		Power-fail detect
53	ADI	ref HOLD PLISTOP controlled	A/D converter input
54	HCTR	HOLD. PLISTOP controlled	Universal counter input
56	VDD		5 V supply
57	FMIN		FM VCO input
58	AMIN	HOLO, PLLSTOP controlled	AM VCO input
59	VSS		Ground

Number	Name	Equivalent circuit	Description
60	EO	J	Phase comparator output
61	AIN	AIN .	Analog input
62	AOUT	AOUT HE THE	Analog output

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD} max	-0.3 to 6.5	V
Port G, HOLD, ADI and SNS input voltage range	V _{IN1}	-0.3 to 13	V
Input voltage range (other inputs)	V _{IN2}	-0.3 to $V_{DD} + 0.3$	٧
Port H and AOUT output voltage range	V _{out1}	→0.3 to 15	V
Output voltage range (all other outputs)	V _{OUT2}	-0.3 to $V_{DD} + 0.3$	V
Port H output current range	I _{OUT1}	0 to 5	mA
Ports E and F output current range	I _{OUT2}	0 to 3	mA
Ports B and C output current range	Гоитз	0 to 1	mA
AOUT output current range	lour4	0 to 2	mA
Power dissipation	Po	400	mW
Operating temperature range	Topr	-40 to 85	deg. C
Storage temperature range	T _{stg}	-45 to 125	deg. C

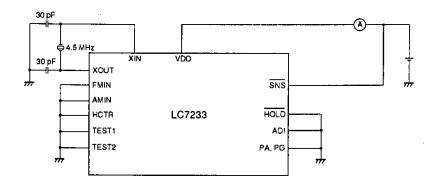
Recommended Operating Conditions

 $T_a = 25 \text{ deg. C}$

Parameter	Symbol	Rating	Unit
Supply voltage	V _{DO}	5	V
Supply voltage range (PLL and CPU)	V _{DD1}	4.5 to 5.5	V
Supply voltage range (CPU)	V _{DD2}	3.5 to 5.5	V
Supply voltage range for data retention	V _{DD3}	1.3 to 5.5	V

Electrical Characteristics

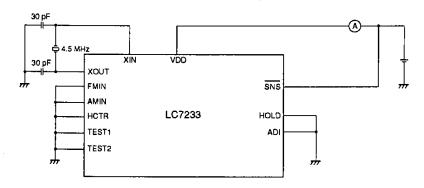
 $V_{\text{DD}} = 3.5$ to 5.5 V, $T_{\text{a}} = -40$ to 85 deg. C unless otherwise noted


Parameter	Comba!	Candition		Rating		Unit
rarallister	Symbol	Condition	min	typ	max	Ollik
Port G HIGH-level input voltage	V _{IH1}		0.7V _{DD}	_	8.0	٧
SNS HIGH-level input voltage	V _{IH2}		2.5	-	8.0	٧
Port A HIGH-level input voltage	V _{IH3}		0.6V _{DD}	-	V _{DD}	٧
Ports E and F HIGH-level input voltage	V _{IH4}		0.7V _{DD}	_	V _{DD}	٧
HOLD HIGH-level input voltage	V _{IH5}		0.8V _{DD}	_	8.0	٧
Port G LOW-level input voltage	V _{IL1}		0	-	0.3V _{DD}	٧
HOLD LOW-level input voltage	VIL2		0	-	0.4V _{DD}	٧
SNS LOW-level input voltage	V _{IL3}		0	-	1.3	٧
Port A LOW-level input voltage	V _{IL4}		0	-	0.2V _{DD}	٧
Ports E and F LOW-level input voltage	V _{IL5}		0	_	0.3V _{DD}	٧
XIN input frequency	f _{IN1}	V _{IN} = 0.5 to 1.5 V	4.0	4.5	5.0	MHz
FMIN input frequency		V _{IN} = 0.1 to 1.5 V, V _{DD} = 4.5 to 5.5 V	10	-	130	MHz
willy input nequelicy	fin2	$V_{IN} = 0.15 \text{ to } 1.5 \text{ V},$ $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	10	_	150	₩IΠZ
AMIN input frequency (low range)	fins	V _{IN} = 0.1 to 1.5 V, V _{DD} = 4.5 to 5.5 V	0.5	-	10	MHz
AMIN input frequency (high range)	fin4	$V_{IN} = 0.1$ to 1.5 V, $V_{DD} = 4.5$ to 5.5 V	2.0	_	40	MHz
HCTR input frequency	fins	V _{IN} = 0.1 to 1.5 V, V _{DD} = 4.5 to 5.5 V	0.4	-	12	MHz
XIN rms input amplitude	V _{IN1}		0.5		1.5	٧
FMIN rms input amplitude	V _{IN2}		0.1	-	1.5	٧
AMIN rms input amplitude	V _{IN3}		0.1		1.5	٧
HCTR rms input amplitude	V _{IN4}		0.1	_	1.5	٧
ADI input voltage range	V _{IN5}		0	_	V _{DD}	٧
SNS reject pulsewidth	P _{rej}		, <u> </u>	-	50	μ\$
Standby threshold voltage	V _{DET}		2.7	3.0	3.3	٧
HOLD, ADI, SNS and port G HIGH-level input current	liH1	V _{IN} = 5.5 V	_	-	3.0	μА
Ports A, E and F HIGH-level input current	l _{IH2}	Ports E and F are high impedance, port A has no R _{PD} , V _{IN} = V _{DD}	_	-	3.0	μΑ
XIN HIGH-level input current	l _{IH3}	$V_{IN} = V_{DD} = 5.0 \text{ V}$	2	5	15	μΑ
FMIN, AMIN and HCTR HIGH-level input current	11114	V _{IN} = V _{DD} = 5.0 V	4	10	30	μА
Port A HIGH-level input current	I _{IH5}	$V_{IN} = V_{OD} = 5.0 \text{ V},$ port A has R_{PD}	-	50	_	μΑ
AIN HIGH-level input current	I _{tH6}	VIN = VDD		0.01	10.00	nA

Downston	A		T	Rating		0-4
Parameter	Symbol	Condition	min	typ	max	Unit
HOLD, ADI, SNS and port G LOW-level input current	l _{IL1}	VIN = VSS	-	-	3.0	μА
Ports A, E and F LOW-level input current	l _{IL2}	Ports E and F are high impedance, port A has no R _{PD} , V _{IN} = Vss	_	-	3.0	μА
XIN LOW-level input current	I _{(L3}	V _{IN} = V _{SS}	2	5	15	μΑ
FMIN, AMIN and HCTR LOW-level input current	I _{IL4}	Vin = Vss	4	10	30	μА
AIN LOW-level input current	I _{IL5}	V _{IN} = V _{SS}	-	0,01	10.0	nA
Port A input voltage	V _{IF}	Port A is high impedance	_	-	0.05V _{DO}	٧
Port A pull-down resistance	R _{PD}	V _{DD} = 5 V	75	100	200	kΩ
EO output leakage current	l _{OFFH1}	Vo = VDD	_	0.01	10.0	nA
Ports B, C, E and F output leakage current	l _{OFFH2}	$V_0 = V_{DD}$	-	-	3.0	μΑ
Port H output leakage current	Тоггнз	V ₀ = 13 V	-	-	5.0	μА
AOUT output leakage current	loffh4	V ₀ = 13 V	-	-	1.0	μА
EO output leakage current	I _{OFFL1}	V ₀ = V _{SS}	_	0.01	10.0	nA
Ports B, C, E and F output leakage current	loffL2	Vo = Vss	-	ı	3.0	μΑ
Ports B and C HIGH-level output voltage	V _{OH1}	I ₀ = 1 mA	V _{DD} - 2.0	V _{DD} - 1.0	V _{DD} - 0.5	V
Ports E and F HIGH-level output voltage	V _{OH2}	I ₀ = 1 mA	V _{DD} 1.0	-	-	٧
EO HIGH-level output voltage	V _{OH3}	l ₀ = 500 μA	V _{DD} - 1.0	_	-	٧
XOUT HIGH-level output voltage	V _{OH4}	l ₀ = 200 μA	V _{DD} - 1.0	-	-	٧
S1 to S23 HIGH-level output voltage	V _{OH5}	1 ₀ = -0.1 mA	V _{DD} - 1.0	-	-	٧
COM1 and COM2 HIGH-level output voltage	V _{0H6}	l ₀ = 25 μA	V _{DO} - 0.75	-	-	٧
Ports B and C LOW-level output voltage	V _{0L1}	lo = 50 μA	0.5	1.0	2.0	V
Ports E and F LOW-level output voltage	V _{OL2}	I ₀ = 1 mA	-	_	1.0	٧
EO LOW-level output voltage	V _{OL3}	I ₀ = 500 μA	_	-	1.0	٧
XOUT LOW-level output voltage	V _{OL4}	Ι ₀ = 200 μΑ	_	_	1.0	٧
S1 to S23 LOW-level output voltage	V _{OL5}	l ₀ = 0.1 mA	-	-	1.0	٧
AOUT LOW-level output voltage	V _{OL6}	i ₀ = 5 mA, AIN = 1.3 V			0.5	٧
COM1 and COM2 LOW-level output voltage	V _{OL7}	Ιο = 25 μΑ	0.3	0.5	0.75	٧
Port H LOW-level output voltage	Vola	l ₀ = 5 mA	0.75	-	2.0	٧
COM1 and COM2 mid-level output voltage	V _{M1}	V _{DD} = 5 V, I ₀ = 20 μA	2.0	2.5	3.0	٧

Parameter	Sumbal	Condition		Rating		Unit
r al allictor	Symbol	Condition	min	typ	max	Unii
A/D converter error	ε	V _{DD} = 4.5 to 5.5 V	- 1/2	-	1/2	lsb
Supply current	I _{DD1}	f _{in} = 130 MHz, V _{DD} = 4.5 to 5.5 V	_	15	20	mA
		PLL halted, t _{cyc} = 2.67 μs	-	1.5	_	
Hold-mode supply current	I _{DD2}	PLL halted, t _{cyc} = 13.33 μs, V _{DD} = 3.5 to 5.5 V	-	1.0	_	mA
		PLL halted, $t_{cyc} = 40.00 \ \mu s$, $V_{DD} = 3.5 \ to \ 5.5 \ V$	-	0.7		
Standby-mode supply current		V_{DD} = 5.5 V, oscillator halted, T_a = 25 deg. C	-	_	5	
ошниму-тнойе заррту ситтепт	I _{DD3}	$V_{DO} = 2.5 \text{ V, oscillator}$ halted, $T_a = 25 \text{ deg. C}$	_	-	1	μА

Measurement Circuits


Hold mode

Notes

- 1. Ports E and F are selected as output ports.
- 2. Ports A to H, S1 to S23, COM1 and COM2 are open.

Standby mode

Note Ports A to H, S1 to S23, COM1 and COM2 are open.

FUNCTIONAL DESCRIPTION

LCD Driver

The LC7233 can drive LCD segments. The LCP and LCD instructions transfer data to the LCD outputs. The LCD instruction transfers data directly to the LCD outputs. The LCP instruction converts data to 7-segment format before transfer to the outputs.

S1 to S23 are the driver outputs. The LCD frame rate is 100 Hz with a 50% duty cycle. After reset or power-up, a blank signal is present on all outputs. In standby mode, all outputs are LOW. They can be used as general-purpose outputs if the appropriate mask option is selected.

COM1 and COM2 are the LCD common driver outputs. Output drive is 50% duty with 50% bias. Upon reset or after power-up, the normal drive signals are present on these outputs. In standby mode, all outputs are LOW.

Frequency Counter

Frequency measurement is performed at the HCTR input by the 20-bit universal counter. The input frequency range is 0.4 to 12 MHz, which is used for measuring AM and FM IF frequencies. Capacitive coupling should be used.

Phase-locked Loop

The FMIN or AMIN input signal is divided down by a programmable divider, and then compared with the crystal frequency, which is also divided down using 14 selectable ratios. The phase difference between the two signals is measured using a phase detector and output on EO.

FMIN is the input pin for the FM VCO input signal. The input frequency range is 10 to 130 MHz. Capacitive coupling should be used.

AMIN is the AM VCO input. The bandwidth is adjustable in two ranges by using the PLL instruction—HIGH (2 to 40 MHz) for the SW band, and LOW (0.5 to 10 MHz), for the LW and MW bands. Capacitive coupling should be used.

Input/Output Ports

Port A

This input port has a low switching threshold, which is used for keypad matrix inputs. Pull-down resistors for all pins are available as a mask option. Note that either all or none of the pins should have pull-down resistors. In standby mode, inputs are ignored.

Ports B and C

These output ports have unbalanced CMOS outputs which are used as keypad matrix scan outputs. Upon reset, outputs are set LOW, and in standby mode, outputs are high impedance. The outputs can be short-circuited.

Port E

The transfer direction of this input/output port is selected automatically under software control. When an input instruction (IN, TPT, or TPF) is executed, port E is configured for input operation, and an output instruction (OUT, SPB or RPB), for output operation. Upon reset, all pins become inputs. In standby mode, the output drivers are high impedance and the input signals are ignored. All bits should either be inputs or outputs.

Port F

The transfer direction of this input/output port is selected by the FPC instruction. Each pin of this port can be set independently to be an input or output. Upon reset, all pins become inputs. In standby mode, the output drivers are high impedance and the input signals are ignored.

Port G

This is an input port only. In standby mode, inputs are ignored.

Port H

These output ports are high-voltage, n-channel open-drain drivers, which are used for switching power supplies. Upon reset and in standby mode, outputs are high impedance. Port H can also be configured as the output of DACI and DAC2.

A/D Converter

The A/D converter is a 6-bit successive approximation type. The conversion cycle time is 1.28 ms. Full-scale output data is 3FH for an input of $V_{DD} \times (63/96)$.

Power-fail Detection

When connected to the supply, \overline{SNS} is used as a power-fail detector. \overline{SNS} can also be used as a standard input port.

Crystal Oscillator

The master crystal oscillator, which has a feedback resistor on-chip, requires only the connection of a 4.5 MHz crystal.

Low-power Modes

Hold mode

When the hold-mode control pin, HOLD, is driven LOW and the HOLDEN (hold enable) flip-flop has previously been set by an SS instruction, the LC7233 enters hold mode.

 \overline{HOLD} has a high-voltage input (V_{IH}(max) = 8.0 V) which can be connected directly to the power supply.

Standby mode

When the LC7233 is in hold mode and HOLD is LOW, standby mode can be set by the CKSTP instruction.

Test Pins

Two device test pins are provided—TEST1 and TEST2. These should either be tied to Vss or left open.

INSTRUCTION SET

ADDR	Program memory address [12 bits]
b	Borrow
В	Bank number [2 bits]
С	Carry
DH	Data memory address high-order bits (row address) [2 bits]
DL	Data memory address low-order bits (column address) [4 bits]
I	Immediate data [4 bits]
M	Data memory address
N	Bit position [4 bits]
Pn	Port number [4 bits]
T	General register (Bank 00H to 0FH)
Rn	Register number [4 bits]
()	Contents of register or memory
()n	Contents of bit N of register or memory

Operand		Oreration			1 1					Instruction format	n format						i i	Parentalists	
1st 2nd 015 014 013 012 011 010 09 08	D15 D14 D13 D12 D11 D10 D9	D15 D14 D13 D12 D11 D10 D9	D14 D13 D12 D11 D10 D9	D13 D12 D11 D10 D9	D12 D11 D10 D9	D11 D10 D9	D110 D9	8	Н		D7 D6	8	5 04	8	8	8	MUZUON	Versingbook	Skip condition
			:		:					. 1		Addin	Add instructions						
r M Add M to r 0 1 0 0 0 0 DH	Add N to 7 0 1 0 0 0 0	. 0 1 0 0 0 0	1 0 0 0 0	0 0 0 0	0 0	0	0		吾			ᄓ			Æ		(v) + (v) + (v)	Adds the contents of M to the contents of r and stores the result in r	
r M Add M to r and 0 1 0 0 1 DH skip if carry	Add M to r and 0 1 0 0 1 skp if carry	Mitorand 0 1 0 0 1	1 0 0 0 1	0 0 0 1	0 0 1	0 1	-		¥ .			٦.			뜐		$r \leftarrow (r) + (M)$, skip if carry	Adds the contents of M to the contents of r and stores the result in r. Skips if a carry is generated	Carry
r Mr Add M to r 0 1 0 0 1 0 DH	Add M to r 0 1 0 0 1 0 With carry	r 0 1 0 0 1 0	1 0 0 1 0	0 0 1 0	0 1 0	1 0			핆			ಕ	.]		R.		2 + (M) + C	Adds the contents of M to the contents of r and C and stores the result in r	
r M with carry and 0 1 0 0 1 1 DH skip if carry	Add M lo r with carry and 0 1 0 0 1 1 skip if carry	0 1 0 0 1 1	1 0 0 1	0 0 1 1	1 1	1	-		舌			ח			Rn		$\Gamma \leftarrow (I) + (M) + C$, skip if carry	Adds the content of M to the contents of r and C and stores the result in r. Skips if a carry is generated	Camy
M 1 Add 10 M 0 1 0 1 0 0 DH	Add 1 0 1 0 0 0	M 0 1 0 1 0 0	1 0 1 0 0	0 1 0 0	1 0 0	0 0	0		HO			DL			-		M ← (M) + I	Adds the immediate data to the contents of M and stores the result in M	
M I Add to M and 0 1 0 1 0 1 DH	Add I to M and 0 1 0 1 0 1	and 0 1 0 1 0 1	1 0 1 0 1	0 1 0 1	1 0 1	0 1	-	-	폽			т			-		$M \leftarrow (M) + I, \ skip \ \text{if}$ carry	Adds the inninediate data to the contents of M and stores the result in M. Skips if a carry is generated	Camy
M I Add to M 0 1 0 1 1 0 DH with carry	Add to M 0 1 0 1 1 0	0 1 0 1 0	1 0 1 1 0	0 1 1 0	1 1 0	0 1			품			ด			-		M ← (M) + 1 + C	Adds the immediate data to the contents of M and C and stores the result in M	
M i with carry and 0 1 0 1 1 1 DH skip if carry	Add I to M with carry and 0 1 0 1 1 1 skip if carry	0 1 0 1 1	1 0 1	1 1	-	-			퓹			٥٦			1		$M \leftarrow (M) + I + C$, skip if carry	Adds the immediate data to the contents of M and C and stores the result in M. Skips if a carry is generated	Csm
											S	offract i	Subtract instructions	1					
r M Subtract M 0 1 1 0 0 0 DH from r	Subtract M 0 1 1 0 0 0	0 1 1 0 0 0	1 1 0 0 0	1 0 0 0	0 0 0	0 0	D		품			Dr.			뜐		$r \leftarrow (r) - (M)$ skip if carry	Subtracts the contents of M from the contents of r and stores the result in r	
r M from r and skip 0 1 1 0 0 1 DH if borrow	Subtract M trom r and Skip 0 1 1 0 0 1	skip 0 1 1 0 0 1	1 0 0 1	0 0 1	1	1			å			10			Ŗ		r <- (r) - (M), skip if borrow	Subtracts the contents of M from the contents of r and stores the result in r. Skips if a borrow is generated	Ватгож
r M from r with 0 1 1 0 1 0 DH borrow	Subtract M 0 1 1 0 1 0 borrow	0 1 1 0 1	- 0	0 0	- 0	0			푬			ы			몺	,	r ← (r) – (M) – b	Subtracts the contents of M from the contents of r with borrow and stores the result in r	·
Subtract M from r with 0 1 1 0 1 1 DH borrow and skip 0 1 1 0 1 1 DH if borrow	Subtract M from r with 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	skip 0 1 1 0 1 1	0	-		-			퓹	_		DF.			R.		r ← (r) – (M) – b, sköp ří borrow	Subtracts the contents of M from the contents of r with borrow and stores the result in r. Skips if a borrow is generated	Borrow
M i Subtract I from 0 1 1 1 0 0 DH	Subtract I from 0 1 1 1 0 0	0 1 1 1 0	1 1 0 0	1 1 0 0	1 0 0	0 0	0		5	7		טר			1		M ← (M) - I	Subtracts the immediate data from the contents of M and stores the result in M	
M i Subtract i from 6 1 1 1 0 1 E	Subtract I from M and skip if 0 1 1 1 0 1 borrow	1 1 0 5	1 1 0 0	1 1 0 1	1 0 1	1	-		_	吾		ם			-		M ← (M) – l, skip if borrow	Subtracts the immediate data from the contents of M and stores the result in M. Skips if a borrow is generated	Вогтож
M Subtract 1 from 0 1 1 1 1 0 D	Subtract I from 0 1 1 1 1 0 Meth borrow	0 1 1 1 0	1 1 1 0	1 1 0	1 1 0	0 1				품		占			-	ŀ	$M \leftarrow (M) - 1 - b$	Subtracts the immediate data from the contents of M with borrow and stores the result in M	

		Operand	j				İ	;		Instructi	Instruction format			1		
9012	181	2md	Operation	9115	94	D13	210	110	DIG	20	D7 D6 D5	104	03 02 01 00	Notabbn	UCECTIFICON	Serie contribution
Sibs	×	-	Subtract I from M with borrow and skip if borrow	0	-	-	-	-	-	на	70		-	M ← (M) · I ·· b, skip ř borrow	Subtracts the immediate data from the contents of M with borrow and stores the result in M. Skips if a borrow is generated	Barrow
	1										Compare	Compare instructions				
SEO	_	≥	Skip if r equals M	0	0	0	0	0	-	吾	70		Rn	(r) - (M), skip if zero	Compares the contents of r and M and skips if they are equal	(yy) = (1)
SGE	_	₹	Skip if r is greater than or equal to M	0	0		0	-	-	품	מר		뜐	(r) – (M), skip ri (r) ≥ (M)	Compares the contents of r and M and skips if r is greater than or equal to M	(N) < (J)
SEOI		_	Skip if M equals I	•	-	-	-	-	-	H	10		-	(M) - 1, skip if zero	Compares the immediate data to the contents of M and skips if they are equal	0 = 1 - (M)
EE 98	Σ	_	Skip if M is greater than or equal to 1		0	-	-	-	-	푬	ಕ		_	(M) - 1, skip if (M) ≥ l	Compares the contents of M with the inmediate data and skips if M is greater than or equal to I	- ^: (N)
						1	1	1			Logic arithmetic instructions	tic instructi	OUS			
AND		_	AND I with M	0	0	-	-	0		푬	ಕ		_	M ← (M) · 1	Calculates the logic-AND of the immediate data and the contents of M and stores the result in M	
HO.	₽	_	OR I with M	0	0	-		-	0	HO	ю		-	M <- (M) + 1	Calcustres the logic-OR of the immediate data and the contents of M and stores the result in M	
EXI	-	æ	Exclusive-OR M with r	0	0	-	0	b	0	吾	70		뜐	$r \leftarrow (r) \text{ oplus (M)}$	Calculates the logic-XOR of the contents of r and M, and stores the result in r	
											Load and ston	stare instructions	Oms			
ОП	<u>.</u>	≥	Lozd M into r	-	•	•	-		0	품	ъ		器	r ← (M)	Moves the contents of M to r	
ST	2	-	Store r in M	-	0	ė,	0	0	-	H	טר		Rn	M ← (f)	Moves the contents of r to M	
MVRD	_	W	Move M to M addressed by Rn	-	0	0	0	-	0	. B	Dr.		뜐	[DH, Rn] ← (M)	Moves the contents of M to the address referenced by DH and Rn	
MVRS	Σ	I	Move M addressed by Rn to M	-	0	0	0	-		H	70		Æ	M ← [OH, Rn]	Moves the contents of the memory location referenced by DK and Rn to M	
MVSR	₩.	W	Move M to M	-	0	0	-	0		苦	0.1		DL2	[DH.DL1] ← [DH.DL2]	Moves the contents of memory location 2 to memory location 1	
WW	2	_	Move I to M	-	-	0	-	-	1	HO	TO DE		-	M ← 1	Moves the immediate data to M	
∏	2	_	Load M to PLL registers	-		0	-	-	0	舌	10		Rn	PLLr ← (M)	Moves the contents of M to the PLL registers	

	ľ		<u> </u>								1										
Manage	ad n	Uperand	Operation		[<u>=</u>	Instruction formal	E L	_						-		
	ħ	2nd		ms.	914	D13	д П	듈	910	25	2	70	8	22	ă	8	10 20	8	NOCEOU I	uond u 20041	Stip condition
													2	test instructions	uctions						
TMT	≥	2	Test bits of M and skip if true	1	0	1	0	0	-	HO	-		Ы				z		Skôp if M(N) = all 1	Tests the bits of memory location M specified by N. Skips if all bits are logic 1	All bits specified = 1
TMF	2	2	Test bits of M and skip if false	-	0	-	0	1	1	на			Ы				æ		Skip if M(N) = all 0	Tests the bits of memory location M specified by N. Skips if all bits are logic 0	All tits specified = 0
												denn	amd s	Jump and subroutine instructions	e instru	ertions					
JMP	ADI	ADOR	Jump to address	-	0	-	_					Aſ	ADDR (12 bits)	2 bits)					PC ← ADDR	Jumps to the address specified by ADDR	
CAL	ADDR		Call subroutine	-	-	0	0					A.	ADDR (12 bits)	2 bits)					Stack ← (PC) + 1, PC ← ADDR	Jumps to the subroutine specified by ADDR	
RT			Return from subroutine		-	0	_	0	-	•	0	-	-	-		-	0	-	PC ← stack	Returns from a subroutine	
												1	Fag	test instr	instructions	-	-	}			
MIT	Z		Test timer flip-flop	-	1	0	1	-	-	-		-	-	-			z		Skip if timer F/F = 0	Tests the timer flip-flop and skips if zero	Timer F/F = 0
旭	Z		Test PLL flip-flop	-	-	0	-	0	-	-	-				0		2		Skip if PLL F/F = 0	Tests the PLL-unlocked flip-flop and skips if zero	PLL F/F = 0
										1	"	Status re	register t	test and	펉	instructions	и				
- ss	N		Set status register bits	1	1	0	1	-	-	0	0	0	0	0			2		(Status register 1) N ← 1	Sets the bits of the status register specified by N	
RS	N		Reset status register bits	-	-	0	-	-	-	•	-	0	•	-			z		(Status register 1) N ← 0	Resets the bits of the status register specified by N	
TST	N		Test status register bits and skip if true	-	-	0	-	-	-	-	•	-	-	-			z		Skip if (status register 2) N = all 1	Tests the bits of status register 2 specified by N. Skips if all bits are 1	All bits specified = 1
TSF	N		Test status register bits and skip if false	-	,	0	-	-	-	-	-	0	0		0		æ		Skip if (status register 2) N = all 0	Tests the bits of status register 2 specified by N. Skips if all bits are 0	All bits specified = 0
											ĺ		Bank	select instruction	chuction						
BANK	-		Select bank	-	-	0	-	0	0	В		0	0	0	0	-	0	0	BANK ← B	Selects one of four memory banks	
												_	nput/on	Input/output instructions	truction	'n	! !				
CC)	Σ	-	Move data to LCD segments	-	1	1	0	0	0	8			占				DIGIT		LCD (DIGIT) ← 1	Loads the immediate data directly to the LCD driver	
වු	2	-	Move 7-segment data to LCD	-	-	-	0	0	-	М			ᆸ				DIGIT		CD (DIGIT) ← PLA ←	Converts the immediate data to 7-segment format using a PLA then transfers it to the LCD driver	
Z.	₹	Pn	Move port data to M	-	+	1	0	-	0	품	_		늄				۔ ا		M ← (part (Pn))	Moves the data from input port Pn to M	
				1						I	1		l		1						

ļ	at 0	Operand	Omeration								Instruction format	format							a distribution	Perceittion	Gir Seedilise
	181	2md	operations	МS	110	D13	2112	110	910	2	2	D7	18	8	75	8	20	8		unndunen	
OUT	×	P.	Move data to port	-	_	-	0	-	-	품			ᆸ				۵		(Port (Pn)) ← M	Moves the contents of memory location M to port Pn	
885	Æ	z	Set port bits	-	-	_	-	0	0	0	-		م	1	<u> </u>		z		(Port (Pn)) N ← 1	Sets the bits of port Pn, specified by N. to logic 1	
RP8	Æ	z	Reset port bits	-	_	-	-	0	-	-	-		Δ.				z		(Port (Pn)) N ← 0	Sets the bits of port Pn, specified by N, to logic 0	
ТРТ	ų	æ	Test bits of port and skip if frue	+	-	-	-	_	0	-			۵				Z		Skip if (port (Pn)) N = all 1	Tests the bits of port Pn specified by N. Skips if all bits are logic 1	All bits specified = 1
TPF.	Pn	z	Test bits of port and skip if false	-	- '	-	-	-	-	-	-		۵				*		Skip if (port (Pn) N = all 0	Tests the bits of port Pn specified by N. Skips if all bits are logic 0	All bits specified = 0
]					ş	resal	Universal counter instructions	nstruct	, i					
SON	_		Set UCCW1	6	0	0	0	0	0	0	-	0		0			_		UCCW1 ← 1	Sets the universal counter flag 1	
ဆဂ	-		Set LOCKY2	۰	0	0	0	0	0	-	-	0	0	0			-		UCCW2 ← 1	Sets the universal counter flag 2	
												E	liscellan	Miscellaneous instructions	rtruction	2					
SĘ.	Z		Port F direction control	0	0	0	,	0	0	0		•					z		FPC latch \leftarrow N	Defines the direction of individual pins of port F. If a but in the port F direction register is set by FPC, the corresponding pin of port F becomes an output.	
CKSTP			Stop clock	0	0	0	-	0	0	0	-	0	0	0		0	0 0	0	Stop clock if HOLD = 0	Stops the processor clock if $\overline{HOLD} = 0$	
DAC	_		Move data to DAC registers	0	0	0	0	0	0	-	0	0	0	0	0		_		DAC _r ← I	Loads the immediate data to the DAC registers	
NOP			No operation	0	0	0	0	0	0	0	0	0	0	0	0					No operation	!

MASK OPTIONS

. Parameter	Options
Watchdog timer (WDT)	Yes
**************************************	No
Pull-down resistors on port A (the keypad matrix input port)	Yes
Tull-down resistors on port A (the keypad matrix input port)	No
	2.67 μs
Instruction cycle time	13.33 μs
	40.00 μs
S1 to S23 configuration	LCD driver output port
S1 to S23 configuration	General-purpose output port

DEVELOPMENT SYSTEM

The LC7233 development environment is shown in figure 1. It uses an LC72EV32 evaluation chip mounted on a TB-72EV32 target board and a multifunctional emulator (RE32), which is controlled by a personal computer, to provide full debugging facilities.

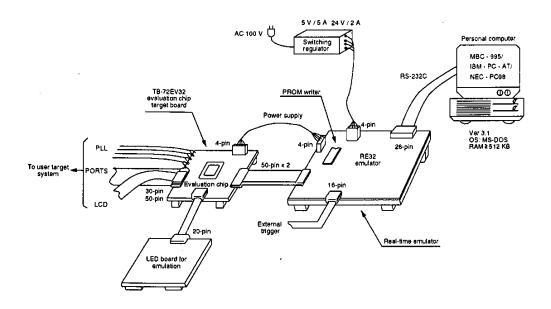


Figure 1. Development system