## FAIRCHILD

SEMICONDUCTOR

## CD4724BC 8-Bit Addressable Latch

## **General Description**

The CD4724BC is an 8-bit addressable latch with three address inputs (A0–A2), an active low enable input ( $\overline{E}$ ), active high clear input (CL), a data input (D) and eight outputs (Q0–Q7).

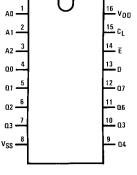
Data is entered into a particular bit in the latch when that is addressed by the address inputs and the enable ( $\overline{E}$ ) is LOW. Data entry is inhibited when enable ( $\overline{E}$ ) is HIGH.

When clear (CL) and enable ( $\overline{E}$ ) are HIGH, all outputs are LOW. When clear (CL) is HIGH and enable ( $\overline{E}$ ) is LOW, the channel demultiplexing occurs. The bit that is addressed has an active output which follows the data input while all unaddressed bits are held LOW. When operating in the addressable latch mode ( $\overline{E} = CL = LOW$ ), changing more than one bit of the address could impose a transient wrong

address. Therefore, this should only be done while in the memory mode ( $\overline{E}$  = HIGH, CL = LOW).

October 1987

Revised January 1999


#### Features

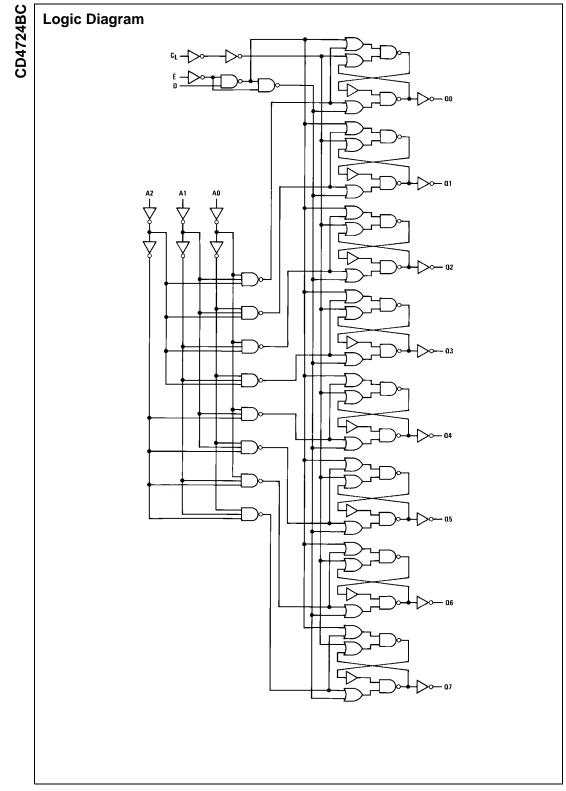
- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V<sub>DD</sub> (typ.)
- Low power TTL compatibility:
- fan out of 2 driving 74L or 1 driving 74LS
- Serial to parallel capability
- Storage register capability
- Random (addressable) data entry
- Active high demultiplexing capability
- Common active high clear

## Ordering Code:

| Order Number           | Package Number            | Package Description                                                               |
|------------------------|---------------------------|-----------------------------------------------------------------------------------|
| CD4724BCM              | M16A                      | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body |
| CD4724BCN              | N16E                      | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide            |
| Devices also available | in Tape and Reel. Specify | by appending the suffix letter "X" to the ordering code.                          |

# Connection Diagram Pin Assignments for DIP and SOIC




### Truth Table

|   | Mode Selection |                       |                        |                      |  |  |  |
|---|----------------|-----------------------|------------------------|----------------------|--|--|--|
| Ē | CL             | Addressed             | Unaddressed            | Mode                 |  |  |  |
|   |                | Latch                 | Latch                  |                      |  |  |  |
| L | L              | Follows Data          | Holds Previous<br>Data | Addressable<br>Latch |  |  |  |
| Н | L              | Hold Previous<br>Data | Holds Previous<br>Data | Memory               |  |  |  |
| L | н              | Follows Data          | Reset to "0"           | Demultiplexer        |  |  |  |
| н | н              | Reset to "0"          | Reset to "0"           | Clear                |  |  |  |

© 1999 Fairchild Semiconductor Corporation DS006003.prf

Top View

www.fairchildsemi.com



www.fairchildsemi.com

### Absolute Maximum Ratings(Note 1)

| Recommended   | Operating |
|---------------|-----------|
| <b>A</b> 11/1 |           |

| (Note 2)                              | -                              |
|---------------------------------------|--------------------------------|
| DC Supply Voltage (V <sub>DD</sub> )  | -0.5V to $+18$ V <sub>DC</sub> |
| Input Voltage (V <sub>IN</sub> )      | –0.5V to V_DD +0.5 V_DC        |
| Storage Temperature (T <sub>S</sub> ) | -65°C to +150°C                |
| Power Dissipation (P <sub>D</sub> )   |                                |
| Dual-In-Line                          | 700 mW                         |
| Small Outline                         | 500 mW                         |
| Lead Temperature (T <sub>L</sub> )    |                                |
| (Soldering, 10 seconds)               | 260°C                          |

DC Electrical Characteristics (Note 2)

#### Conditions (Note 2) DC Supply Voltage (V<sub>DD</sub>)

Input Voltage (V<sub>IN</sub>)

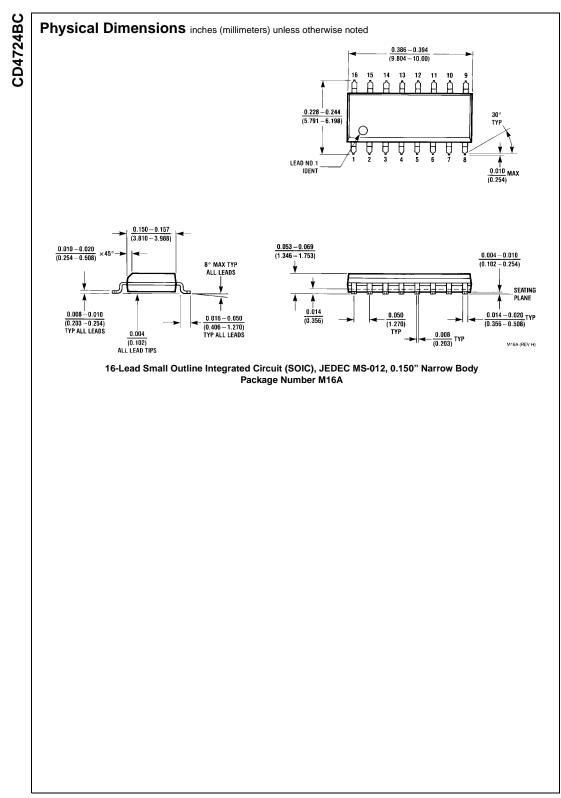
3.0V to 15  $V_{DC}$ 0V to  $V_{DD}$   $V_{DC}$  **CD4724BC** 

mended Operating Conditions" and Electrical Characteristics" provide conditions for actual device operation.

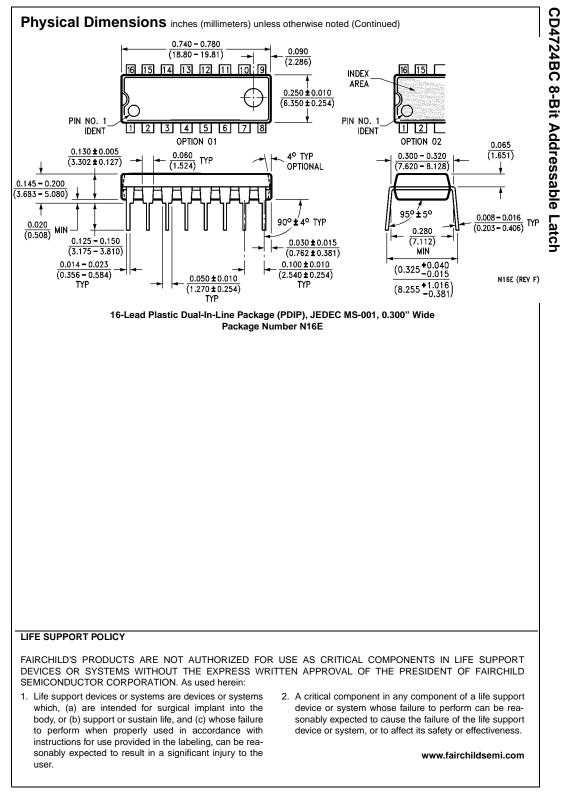
Note 2:  $V_{SS} = 0V$  unless otherwise specified.

| Symbol          | Parameter         | O an allilian a                                | -40   | <b>−40°C</b> |       | +25°C             |       |       | +85°C |       |
|-----------------|-------------------|------------------------------------------------|-------|--------------|-------|-------------------|-------|-------|-------|-------|
|                 |                   | Conditions                                     | Min   | Max          | Min   | Тур               | Max   | Min   | Max   | Units |
| I <sub>DD</sub> | Quiescent Device  | $V_{DD} = 5V$                                  |       | 20           |       | 0.02              | 20    |       | 150   | μA    |
|                 | Current           | $V_{DD} = 10V$                                 |       | 40           |       | 0.02              | 40    |       | 300   | μA    |
|                 |                   | $V_{DD} = 15V$                                 |       | 80           |       | 0.02              | 80    |       | 600   | μA    |
| V <sub>OL</sub> | LOW Level         | I <sub>O</sub>   ≤ 1 μA                        |       |              |       |                   |       |       |       |       |
|                 | Output Voltage    | $V_{DD} = 5V$                                  |       | 0.05         |       | 0                 | 0.05  |       | 0.05  | V     |
|                 |                   | $V_{DD} = 10V$                                 |       | 0.05         |       | 0                 | 0.05  |       | 0.05  | V     |
|                 |                   | $V_{DD} = 15V$                                 |       | 0.05         |       | 0                 | 0.05  |       | 0.05  | V     |
| V <sub>OH</sub> | HIGH Level        | I <sub>O</sub>   ≤ 1 μA                        |       |              |       |                   |       |       |       |       |
|                 | Output Voltage    | $V_{DD} = 5V$                                  | 4.95  |              | 4.95  | 5.0               |       | 4.95  |       | V     |
|                 |                   | $V_{DD} = 10V$                                 | 9.95  |              | 9.95  | 10                |       | 9.95  |       | V     |
|                 |                   | $V_{DD} = 15V$                                 | 14.95 |              | 14.95 | 15                |       | 14.95 |       | V     |
| V <sub>IL</sub> | LOW Level         | $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$   |       | 1.5          |       | 2.25              | 1.5   |       | 1.5   | V     |
|                 | Input Voltage     | $V_{DD} = 10V$ , $V_O = 1V$ or $9V$            |       | 3.0          |       | 4.5               | 3.0   |       | 3.0   | V     |
|                 |                   | $V_{DD} = 15V$ , $V_{O} = 1.5V$ or 13.5V       |       | 4.0          |       | 6.75              | 4.0   |       | 4.0   | V     |
| V <sub>IH</sub> | HIGH Level        | $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$   | 3.5   |              | 3.5   | 2.75              |       | 3.5   |       | V     |
|                 | Input Voltage     | $V_{DD} = 10V$ , $V_O = 1V$ or $9V$            | 7.0   |              | 7.0   | 5.5               |       | 7.0   |       | V     |
|                 |                   | $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ | 11.0  |              | 11.0  | 8.25              |       | 11.0  |       | V     |
| I <sub>OL</sub> | LOW Level Output  | $V_{DD} = 5V, V_{O} = 0.4V$                    | 0.52  |              | 0.44  | 0.88              |       | 0.36  |       | mA    |
|                 | Current           | $V_{DD} = 10V, V_{O} = 0.5V$                   | 1.3   |              | 1.1   | 2.25              |       | 0.9   |       | mA    |
|                 | (Note 3)          | $V_{DD} = 15V, V_{O} = 1.5V$                   | 3.6   |              | 3.0   | 8.8               |       | 2.4   |       | mA    |
| I <sub>OH</sub> | HIGH Level Output | $V_{DD} = 5V, V_{O} = 4.6V$                    | -0.52 |              | -0.44 | -0.88             |       | -0.36 |       | mA    |
|                 | Current           | $V_{DD} = 10V, V_{O} = 9.5V$                   | -1.3  |              | -1.1  | -2.25             |       | -0.9  |       | mA    |
|                 | (Note 3)          | $V_{DD} = 15V, V_{O} = 13.5V$                  | -3.6  |              | -3.0  | -8.8              |       | -2.4  |       | mA    |
| I <sub>IN</sub> | Input Current     | $V_{DD} = 15V, V_{IN} = 0V$                    |       | -0.30        |       | -10 <sup>-5</sup> | -0.30 |       | -1.0  | μΑ    |
|                 |                   | $V_{DD} = 15V, V_{IN} = 15V$                   |       | 0.30         |       | 10 <sup>-5</sup>  | 0.30  |       | 1.0   | μΑ    |

Note 3:  $I_{OL}$  and  $I_{OH}$  are tested one output at a time.


www.fairchildsemi.com

|                                     |                    | f = 20 ns, unless otherwise noted | -1  | r   | 1   |       |
|-------------------------------------|--------------------|-----------------------------------|-----|-----|-----|-------|
| Symbol                              | Parameter          | Conditions                        | Min | Тур | Max | Units |
| t <sub>PHL, tPLH</sub>              | Propagation Delay  | $V_{DD} = 5V$                     |     | 200 | 400 | ns    |
|                                     | Data to Output     | $V_{DD} = 10V$                    |     | 75  | 150 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 50  | 100 | ns    |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay  | $V_{DD} = 5V$                     |     | 200 | 400 | ns    |
|                                     | Enable to Output   | $V_{DD} = 10V$                    |     | 80  | 160 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 60  | 120 | ns    |
| t <sub>PHL</sub>                    | Propagation Delay  | $V_{DD} = 5V$                     |     | 175 | 350 | ns    |
|                                     | Clear to Output    | $V_{DD} = 10V$                    |     | 80  | 160 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 65  | 130 | ns    |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay  | $V_{DD} = 5V$                     |     | 225 | 450 | ns    |
|                                     | Address to Output  | $V_{DD} = 10V$                    |     | 100 | 200 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 75  | 150 | ns    |
| t <sub>THL</sub> , t <sub>TLH</sub> | Transition Time    | $V_{DD} = 5V$                     |     | 100 | 200 | ns    |
|                                     | (Any Output)       | $V_{DD} = 10V$                    |     | 50  | 100 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 40  | 80  | ns    |
| T <sub>WH</sub> , T <sub>WL</sub>   | Minimum Data       | $V_{DD} = 5V$                     |     | 100 | 200 | ns    |
|                                     | Pulse Width        | $V_{DD} = 10V$                    |     | 50  | 100 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 40  | 80  | ns    |
| t <sub>WH</sub> , t <sub>WL</sub>   | Minimum Address    | $V_{DD} = 5V$                     |     | 200 | 400 | ns    |
|                                     | Pulse Width        | $V_{DD} = 10V$                    |     | 100 | 200 | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 65  | 125 | ns    |
| t <sub>WH</sub>                     | Minimum Clear      | $V_{DD} = 5V$                     |     | 75  | 150 | ns    |
|                                     | Pulse Width        | $V_{DD} = 10V$                    |     | 40  | 75  | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 25  | 50  | ns    |
| t <sub>SU</sub>                     | Minimum Setup Time | $V_{DD} = 5V$                     |     | 40  | 80  | ns    |
|                                     | Data to E          | $V_{DD} = 10V$                    |     | 20  | 40  | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 15  | 30  | ns    |
| t <sub>H</sub>                      | Minimum Hold Time  | $V_{DD} = 5V$                     |     | 60  | 120 | ns    |
|                                     | Data to E          | $V_{DD} = 10V$                    |     | 30  | 60  | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 25  | 50  | ns    |
| t <sub>SU</sub>                     | Minimum Setup Time | $V_{DD} = 5V$                     |     | -15 | 50  | ns    |
|                                     | Address to E       | $V_{DD} = 10V$                    |     | 0   | 30  | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | 0   | 20  | ns    |
| t <sub>H</sub>                      | Minimum Hold Time  | $V_{DD} = 5V$                     |     | -50 | 15  | ns    |
|                                     | Address to E       | $V_{DD} = 10V$                    |     | -20 | 10  | ns    |
|                                     |                    | $V_{DD} = 15V$                    |     | -15 | 5   | ns    |
| C <sub>PD</sub>                     | Power Dissipation  | Per Package                       |     | 100 |     | pF    |
|                                     | Capacitance        | (Note 5)                          |     |     |     |       |


Note 5: Dynamic power dissipation ( $P_D$ ) is given by:  $P_D = (C_{PD} + C_L) V_{CC}^2 f + P_Q$ ; where  $C_L = load$  capacitance; f = frequency of operation; for further details, see Application Note AN-90, "Family Characteristics".

www.fairchildsemi.com





www.fairchildsemi.com



Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.