

TDA8752BTriple high-speed Analog-to-Digital Converter 110 MspsRev. 03 - 21 July 2000Product specification

1. General description

The TDA8752B is a triple 8-bit ADC with controllable amplifiers and clamps for the digitizing of large bandwidth RGB signals.

The clamp level, the gain and all other settings are controlled via a serial interface (either l²C-bus or 3-wire serial bus, selected via a logic input).

The IC also includes a PLL that can be locked to the horizontal line frequency and generates the ADC clock. The PLL jitter is minimized for high resolution PC graphics applications. An external clock can also be input to the ADC.

It is possible to set the TDA8752B serial bus address to four different values, when several TDA8752B ICs are used in a system, by means of the I²C-bus interface (for example, two ICs used in an odd/even configuration).

2. Features

- Triple 8-bit ADC
- Sampling rate up to 110 Msps
- IC controllable via a serial interface, which can be either I²C-bus or 3-wire serial bus, selected via a TTL input pin
- IC analog voltage input from 0.4 to 1.2 V (p-p) to produce a full-scale ADC input of 1 V (p-p)
- Three clamps for programming a clamping code between -63.5 and +64 in steps of 1/2 LSB for RGB signals, and from +120 to +136 in steps of 1/2 LSB for YUV signals
- Three controllable amplifiers: gain controlled via the serial interface to produce a full-scale resolution of ½ LSB peak-to-peak
- Amplifier bandwidth of 250 MHz
- Low gain variation with temperature
- PLL controllable via the serial interface to generate the ADC clock which can be locked to a line frequency of 15 to 280 kHz
- Integrated PLL divider
- Programmable phase clock adjustment cells
- Internal voltage regulators
- TTL compatible digital inputs and outputs
- Chip enable high-impedance ADC output

- Power-down mode
- Possibility to use up to four ICs in the same system when using the I²C-bus interface, or more when using the 3-wire serial bus interface
- 1.1 W power dissipation.

3. **Applications**

- RGB high-speed digitizing
- LCD panels drive
- LCD projection systems
- VGA and higher resolutions
- Using two ICs in parallel, a higher display resolution can be obtained: 200 MHz pixel frequency.

4. Quick reference data

Table 1:	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCA}	analog supply voltage	for R, G and B channels	4.75	5.0	5.25	V
V _{DDD}	logic supply voltage	for I ² C-bus and 3-wire serial bus	4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{CCO}	output stages supply voltage	for R, G and B channels	4.75	5.0	5.25	V
$V_{CCA(PLL)}$	analog PLL supply voltage		4.75	5.0	5.25	V
$V_{\text{CCO}(\text{PLL})}$	output PLL supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current		-	120	-	mA
I _{DDD}	logic supply current	for I ² C-bus and 3-wire	-	1.0	-	mA
I _{CCD}	digital supply current		-	40	-	mA
I _{CCO}	output stages supply current	f_{clk} = 110 MHz; ramp input	-	26	-	mA
I _{CCA(PLL)}	analog PLL supply current		-	28	-	mA
I _{CCO(PLL)}	output PLL supply current		-	5	-	mA
f _{clk}	clock frequency		_	_	110	MHz
$f_{ref(\text{PLL})}$	PLL reference clock frequency		15	_	280	kHz
f _{VCO}	VCO output clock frequency		12	-	110	MHz
INL	DC integral non-linearity	from analog input to digital output; full-scale; ramp input; f _{clk} = 110 MHz	_	±0.5	±1.5	LSB
DNL	DC differential non-linearity	from analog input to digital output; full-scale; ramp input; f _{clk} = 110 MHz	_	±0.5	±1.0	LSB
$\Delta G_{amp} / \Delta T$	amplifier gain stability as a function of temperature	V _{ref} = 2.5 V with 100 ppm/°C maximum	_	_	200	ppm/°C
В	amplifier bandwidth	$-3 \text{ dB}; \text{ T}_{\text{amb}} = 25 ^{\circ}\text{C}$	250	_	_	MHz
t _{set}	settling time of the ADC block plus AGC	input signal settling time <1 ns; T _{amb} = 25 °C	_	_	6	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DR _{PLL}	PLL divider ratio		100	-	4095	
P _{tot}	total power dissipation	f _{clk} = 110 MHz; ramp input	-	1.1	_	W
JPLL(rms)	maximum PLL phase jitter (RMS value)	f _{ref} = 66.67 kHz; f _{clk} = 110 MHz	-	112	_	ps

Table 1: Quick reference data...continued

5. Ordering information

Table 2: Ordering information

Type number	Package	Sampling		
	Name	Description	Version	Trequency (MHZ)
TDA8752BH/8	QFP100	plastic quad flat package; 100 leads (lead length 1.95 mm); body $14 \times 20 \times 2.8$ mm	SOT317-2	110

6. Block diagram

TDA8752B

Triple high-speed Analog-to-Digital Converter 110 Msps

TDA8752B

Triple high-speed Analog-to-Digital Converter 110 Msps

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3:	Pin description	
Symbol	Pin	Description
n.c.	1	not connected
DEC2	2	main regulator decoupling input 2
V _{ref}	3	gain stabilizer voltage reference input
DEC1	4	main regulator decoupling input 1
n.c.	5	not connected
RAGC	6	red channel AGC output
RBOT	7	red channel ladder decoupling input (BOT)
RGAINC	8	red channel gain capacitor input
RCLP	9	red channel gain clamp capacitor input
RDEC	10	red channel gain regulator decoupling input
V _{CCA(R)}	11	red channel gain analog power supply
RIN	12	red channel gain analog input
AGND _R	13	red channel gain analog ground
GAGC	14	green channel AGC output
GBOT	15	green channel ladder decoupling input (BOT)
GGAINC	16	green channel gain capacitor input
GCLP	17	green channel gain clamp capacitor input
GDEC	18	green channel gain regulator decoupling input
V _{CCA(G)}	19	green channel gain analog power supply
GIN	20	green channel gain analog input
$AGND_G$	21	green channel gain analog ground
BAGC	22	blue channel AGC output
BBOT	23	blue channel ladder decoupling input (BOT)
BGAINC	24	blue channel gain capacitor input
BCLP	25	blue channel gain clamp capacitor input
BDEC	26	blue channel gain regulator decoupling input
V _{CCA(B)}	27	blue channel gain analog power supply
BIN	28	blue channel gain analog input
AGND _B	29	blue channel gain analog ground
n.c.	30	not connected
n.c.	31	not connected
I ² C/ 3 W	32	selection input between I ² C-bus (active HIGH) and 3-wire serial bus (active LOW)
ADD1	33	I ² C-bus address control input 1
ADD2	34	I ² C-bus address control input 2
ТСК	35	scan test mode input (active HIGH)
TDO	36	scan test output
DIS	37	I ² C-bus and 3-wire serial bus disable control input (disable at HIGH level)
SEN	38	select enable for 3-wire serial bus input (see Figure 10)

9397 750 07338

Table 3:	Pin description	continued
Symbol	Pin	Description
SDA	39	l ² C-bus/3-wire serial bus data input
V _{DDD}	40	logic I ² C-bus/3-wire serial bus digital power supply
V _{SSD}	41	logic I ² C-bus/3-wire serial bus digital ground
SCL	42	I ² C-bus/3-wire serial bus clock input
n.c.	43	not connected
n.c.	44	not connected
ROR	45	red channel ADC output bit out of range
GOR	46	green channel ADC output bit out of range
BOR	47	blue channel ADC output bit out of range
$OGND_B$	48	blue channel ADC output ground
B0	49	blue channel ADC output bit 0 (LSB)
n.c.	50	not connected
n.c.	51	not connected
B1	52	blue channel ADC output bit 1
B2	53	blue channel ADC output bit 2
B3	54	blue channel ADC output bit 3
B4	55	blue channel ADC output bit 4
B5	56	blue channel ADC output bit 5
B6	57	blue channel ADC output bit 6
B7	58	blue channel ADC output bit 7 (MSB)
V _{CCO(B)}	59	blue channel ADC output power supply
$OGND_G$	60	green channel ADC output ground
G0	61	green channel ADC output bit 0 (LSB)
G1	62	green channel ADC output bit 1
G2	63	green channel ADC output bit 2
G3	64	green channel ADC output bit 3
G4	65	green channel ADC output bit 4
G5	66	green channel ADC output bit 5
G6	67	green channel ADC output bit 6
G7	68	green channel ADC output bit 7 (MSB)
V _{CCO(G)}	69	green channel ADC output power supply
$OGND_R$	70	red channel ADC output ground
R0	71	red channel ADC output bit 0 (LSB)
R1	72	red channel ADC output bit 1
R2	73	red channel ADC output bit 2
R3	74	red channel ADC output bit 3
R4	75	red channel ADC output bit 4
R5	76	red channel ADC output bit 5
R6	77	red channel ADC output bit 6
R7	78	red channel ADC output bit 7 (MSB)
V _{CCO(R)}	79	red channel ADC output power supply

Product specification

© Philips Electronics N.V. 2000. All rights reserved.

Table 3:	Pin description	continued
Symbol	Pin	Description
CKREFO	80	reference output clock re-synchronized horizontal pulse
CKAO	81	PLL clock output 3 (in phase with reference output clock CKAO or $\overline{\text{CKBO}}$)
$OGND_PLL$	82	PLL digital ground
СКВО	83	PLL clock output 2
CKADCO	84	PLL clock output 1 (in phase with internal ADC clock)
V _{CCO(PLL)}	85	PLL output power supply
DGND	86	digital ground
ŌĒ	87	output enable; active LOW (when $\overline{\text{OE}}$ is HIGH, the outputs are in high-impedance)
PWDWN	88	power-down control input (device is in Power-down mode when this pin is HIGH)
CLP	89	clamp pulse input (clamp active HIGH)
HSYNC	90	horizontal synchronization input pulse
INV	91	PLL clock output inverter command input (invert when HIGH)
CKEXT	92	external clock input
COAST	93	PLL coast command input
CKREF	94	PLL reference clock input
V _{CCD}	95	digital power supply
AGND _{PLL}	96	PLL analog ground
CP	97	PLL filter input
CZ	98	PLL filter input
V _{CCA(PLL)}	99	PLL analog power supply
n.c.	100	not connected

8. Functional description

This triple high-speed 8-bit ADC is designed to convert RGB signals, coming from an analog source, into digital data used by a LCD driver (pixel clock up to 200 MHz when using 2 ICs).

8.1 IC analog video inputs

The video inputs are internally DC polarized. These inputs are AC coupled externally.

8.2 Clamps

Three independent parallel clamping circuits are used to clamp the video input signals on the black level and to control the brightness level. The clamping code is programmable between code -63.5 and +64 and from +120 to +136 in steps of $1/_2$ LSB. The programming of the clamp value is achieved via an 8-bit DAC. Each clamp must be able to correct an offset from ± 0.1 V to ± 10 mV within 300 ns, and correct the total offset in 10 lines.

The clamps are controlled by an external TTL positive going pulse (pin CLP). The drop of the video signal is <1 LSB.

Normally, the circuit operates with a 0 code clamp, corresponding to the 0 ADC code. This clamp code can be changed from -63.5 to +64 as represented in Figure 5, in steps of $\frac{1}{2}$ LSB. The digitized video signal is always between code 0 and code 255 of the ADC. It is also possible to clamp from code 120 to code 136 corresponding to 120 ADC code to 136 ADC code. Then clamping on code 128 of the ADC is possible.

8.3 Variable gain amplifiers

Three independent variable gain amplifiers are used to provide, to each channel, a full-scale input range signal to the 8-bit ADC. The gain adjustment range is designed so that for an input range varying from 0.4 to 1.2 V (p-p), the output signal corresponds to the ADC full-scale input of 1 V (p-p).

To ensure that the gain does not vary over the whole operating temperature range, an external supplied reference voltage $V_{ref} = 2.5 \text{ V}$ (DC), with a maximum variation of 100 ppm/°C, is used to calibrate the gain at the beginning of each video line before the clamp pulse.

The calibration of the gains is done using the following principle.

From the reference voltage V_{ref} a reference signal of 0.156 V (p-p) ($\frac{1}{16}$ V_{ref}) is generated internally. During the synchronization part of the video line, the multiplexer, controlled by the TTL synchronization signal (HSYNCI, coming from HSYNC; see Figure 1) with a width equal to one of the video synchronization signals (e.g. the signal coming from a synchronization separator), is switched between the two amplifiers.

The output of the multiplexer is either the normal video signal or the 0.156 V reference signal (during HSYNC).

The corresponding ADC outputs are then compared to a preset value loaded in a register. Depending on the result of the comparison, the gain of the variable gain amplifiers is adjusted (coarse gain control; see Figure 2 and 6). The three 7-bit registers receive data via a serial interface to enable the gain to be programmed.

The preset value loaded in the 7-bit register is chosen between approximately 67 codes to ensure the full-scale input range (see Figure 6). A contrast control can be achieved using these registers. In this case care should be taken to stay within the allowed code range (32 to 99).

A fine correction using three 5-bit DACs, also controlled via the serial interface, is used to fine tune the gain of the three channels (fine gain control; see Figure 2 and 7) and to compensate the channel-to-channel gain mismatch.

With a full-scale ADC input, the resolution of the fine register corresponds to $\frac{1}{2}$ LSB peak-to-peak variation.

To use these gain controls correctly, it is recommended to fix the coarse gain (to have a full-scale ADC input signal) to within 4 LSB and then adjust it with the fine gain. The gain is adjusted during HSYNC. During this time the output signal is not related to the amplified input signal. The outputs, when the coarse gain system is stable, are related to the programmed coarse code (see Figure 6).

8.4 ADCs

The ADCs are 8-bit with a maximum clock frequency of 110 Msps. The ADCs input range is 1 V (p-p) full-scale. One out of range bit exists per channel (ROR, GOR and BOR). It will be at logic 1 when the signal is out of range of the full-scale of the ADCs.

Pipeline delay in the ADCs is 1 clock cycle from sampling to data output.

The ADCs reference ladders regulators are integrated.

8.5 ADC outputs

ADC outputs are straight binary. An output enable pin (\overline{OE} ; active LOW) enables the output status between active and high-impedance (\overline{OE} = HIGH) to be switched; it is recommended to load the outputs with a 10 pF capacitive load. The timing must be checked very carefully if the capacitive load is more than 10 pF.

8.6 Phase-locked loop

The ADCs are clocked either by an internal PLL locked to the CKREF clock (all of the PLL is on-chip except the loop filter capacitance) or by an external clock applied to pin CKEXT. Selection is performed via the serial interface bus.

The reference clock (CKREF) range is between 15 and 280 kHz. Consequently, the VCO minimum frequency is 12 MHz and the maximum frequency is 110 MHz. The gain of the VCO part can be controlled via the serial interface, depending on the frequency range to which the PLL is locked.

To increase the bandwidth of the PLL, the charge pump current, controlled by the serial interface, must also be increased. The relationship between the frequency and the current is given by the following equation:

$$f_n = \frac{1}{2\pi} \cdot \sqrt{\frac{K_O \cdot I_P}{(C_Z + C_P) \cdot DR}}$$

(1)

Where:

 f_n = the natural PLL frequency

 $K_O =$ the VCO gain

DR = PLL divider ratio

 C_Z and C_P = capacitors of the PLL filter.

The other PLL equation is as follows:

$$f_z = \frac{1}{2\pi \times R \times C_Z} \operatorname{and} \left(\xi = \frac{1}{2} \times \frac{f_n}{f_z} \right)$$
(2)

Where:

 $f_z = loop filter zero frequency$

R = the chosen resistance for the filter

 ξ = the damping factor

 $F_0 = 0 dB$ loop gain frequency.

Different resistances for the filter can be programmed via the serial interface. To improve the performances, the PLL parameters should be chosen so that:

$$F_{O} = 2\xi \cdot f_{n} \Longrightarrow R \cdot I_{P} = \frac{2\pi \times DR \times F_{O}}{K_{O}}$$
(3)

$$\frac{F_O}{f_{ref}} \le 0.15 \Longrightarrow R \cdot I_P \le \frac{0.3\pi \times DR \times f_{ref}}{K_O} = Lim$$
(4)

The values of R and I_P must be chosen so that the product is the closest to Lim. In the event that there are several choices, the couple for which the ξ value is the closest to 1 must be chosen.

A software program called "PLL calculator" is available on Philips Semiconductor Internet site to calculate the best PLL parameters.

It is possible to control (independently) the phase of the ADC clock and the phase of an additional clock output (which could be used to drive a second TDA8752B). For this, two serial interface-controlled digital phase-shift controllers are included (controlled by 5-bit registers, phase-shift controller steps are 11.25 deg each on the whole PLL frequency range).

CKREF is re-synchronized, by the synchro block, on the CKAO clock. The output is CKREFO (LOW during 8 clock periods). CKAO is the clock at the output of the phase selector A. This clock can be used as the clocks for CKBO and CKADCO. The timing is given in Figure 8.

Pin COAST is used to disconnect the PLL phase frequency detector during the frame flyback or the unavailability of the CKREF signal. This signal can normally be derived from the VSYNC signal.

The clock output is able to drive an external 10 pF load (for the on-chip ADCs).

The PLL can be used in three different methods:

- The IC can be used as stand-alone with a sampling frequency of up to 110 MHz.
- When an RGB signal is at a pixel frequency exceeding 100 to 200 MHz, it is possible to follow one of the two possibilities given below:
 - Using one TDA8752B: the sampling rate can be reduced by a factor of two, by sampling the even pixels in the even frame and the odd pixels in the odd frame.
 Pin INV is used to toggle between the frames.
 - Using two TDA8752Bs: the PLL of the master TDA8752B is used to drive both ADC clocks. The PLL of the slave TDA8752B is disconnected and the CKBO of the master TDA8752B is connected to pin CKEXT of the TDA8752B master and CKAO to the slave TDA8752B. In this case, on pin CKAO CKBO will be the output (with bit CKAB of the master at logic 1).

The master TDA8752B is used to sample the even pixels and the slave TDA8752B for odd pixels, using a 180 deg phase shift between the clocks (both pins CKADCO). The master chip and the slave chip have their pin INV LOW, which guarantees the 180 deg shift ADC clock drive. It is then necessary to adjust phase B of the master chip. Special care should be taken with the quality of the input signal (input settling time).

If CKREFO output signal at the master chip is needed, it is possible to use one of the two phase A values in order to avoid set-up and hold problems in the SYNCHRO function; e.g. PHASEA = 100000 and PHASEA = 111111.

• When INV is LOW, CKADCO is equal to CKEXT inverted.

TDA8752B

Triple high-speed Analog-to-Digital Converter 110 Msps

8.7 I²C-bus and 3-wire serial bus interface

The I²C-bus and 3-wire serial buses control the status of the different control DACs and registers. Control pin DIS enables or disables the full serial interface function (disable at HIGH level). Four ICs can be used in the same system and programmed by the same bus. Therefore, two pins (ADD1 and ADD2) are available to set each address respectively, for use with the I²C-bus interface. All programming is described in Section 9 "I²C-bus and 3-wire serial bus interfaces".

9. I²C-bus and 3-wire serial bus interfaces

9.1 Register definitions

The configuration of the different registers is shown in Table 4.

Function	Subaddress								Rit definition					Default			
name	A 7		A E		4.2	4.0		4.0	MOD								value
	AI	Ab	AD	A4	AJ	AZ	AI	AU	INI2R							LSB	
SUBADDR	-	-	-	-	-	-	-	-	Х	Х	Х	Mode	Sa3	Sa2	Sa1	Sa0	XXX1 0000
OFFSETR	Х	Х	Х	Х	0	0	0	0	Or7	Or6	Or5	Or4	Or3	Or2	Or1	Or0	0111 1111
COARSER	Х	Х	Х	Х	0	0	0	1	Or8	Cr6	Cr5	Cr4	Cr3	Cr2	Cr1	Cr0	0010 0000
FINER	Х	Х	Х	Х	0	0	1	0	Х	Х	Х	Fr4	Fr3	Fr2	Fr1	Fr0	XXX0 0000
OFFSETG	Х	Х	Х	Х	0	0	1	1	Og7	Og6	Og5	Og4	Og3	Og2	Og1	Og0	0111 1111
COARSEG	Х	Х	Х	Х	0	1	0	0	Og8	Cg6	Cg5	Cg4	Cg3	Cg2	Cg1	Cg0	0010 0000
FINEG	Х	Х	Х	Х	0	1	0	1	Х	Х	Х	Fg4	Fg3	Fg2	Fg1	Fg0	XXX0 0000
OFFSETB	Х	Х	Х	Х	0	1	1	0	Ob7	Ob6	Ob5	Ob4	Ob3	Ob2	Ob1	Ob0	0111 1111
COARSEB	Х	Х	Х	Х	0	1	1	1	Ob8	Cb6	Cb5	Cb4	Cb3	Cb2	Cb1	Cb0	0010 0000
FINEB	Х	Х	Х	Х	1	0	0	0	Х	Х	Х	Fb4	Fb3	Fb2	Fb1	Fb0	XXX0 0000
CONTROL	Х	Х	Х	Х	1	0	0	1	Vlevel	Hlevel	Edge	Up	Do	lp2	lp1	lp0	0000 0100
VCO	Х	Х	Х	Х	1	0	1	0	Z2	Z1	Z0	Vco1	Vco0	Di11	Di10	Di9	0110 0001
DIVIDER (LSB)	Х	Х	Х	Х	1	0	1	1	Di8	Di7	Di6	Di5	Di4	Di3	Di2	Di1	1001 0000
PHASEA	Х	Х	Х	Х	1	1	0	0	Х	Di0	Cka	Pa4	Pa3	Pa2	Pa1	Pa0	X000 0000
PHASEB	Х	Х	Х	Х	1	1	0	1	Х	Ckab	Ckb	Pb4	Pb3	Pb2	Pb1	Pb0	X000 0000

Table 4: I²C-bus and 3-wire serial bus registers

All the registers are defined by a subaddress of 8 bits; bit A4 refers to the mode which is used with the I²C-bus interface; bits Sa3 to Sa0 are the subaddresses of each register.

Bit Mode, used only with the I²C-bus, enables two modes to be programmed:

- Mode 0 if bit Mode = 0, each register is programmed independently by giving its subaddress and its content
- Mode 1 if bit Mode = 1, all the registers are programmed one after the other by giving this initial condition (XXX1 1111) as the subaddress state; thus, the registers are charged following the predefined sequence of 16 bytes (from subaddress 0000 to 1101).

9.1.1 Offset register

This register controls the clamp level for the RGB channels. The relationship between the programming code and the level of the clamp code is given in Table 5.

Table 5: Coding				
Programmed code	Clamp code	ADC output		
0	-63.5	underflow		
1	-63			
2	-62.5			
127	0	0		
254	63.5	63 or 64		
255	64	64		
256	120	120		
287	136	136		

The default programmed value is:

- Programmed code = 127
- Clamp code = 0
- ADC output = 0.

9.1.2 Coarse and fine registers

These two registers enable the gain control, the AGC gain with the coarse register and the reference voltage with the fine register. The coarse register programming equation is as follows:

$$GAIN = \frac{N_{COARSE} + 1}{V_{ref} \cdot \left(1 - \frac{N_{FINE}}{32 \times 16}\right)} \times \frac{1}{16} = \frac{N_{COARSE} + 1}{V_{ref} \cdot (512 - N_{FINE})} \times 32$$
(5)

Where: $V_{ref} = 2.5$ V.

The gain correspondence is given in Table 6. The gain is linear with reference to the programming code ($N_{FINE} = 0$).

Table 6: Gain correspondence (COARSE)

N _{COARSE}	Gain	V _i to be full-scale (V)
32	0.825	1.212
99	2.5	0.4

The default programmed value is as follows:

- $N_{COARSE} = 32$
- Gain = 0.825
- V_i to be full-scale = 1.212 V.

To modulate this gain, the fine register is programmed using the above equation. With a full-scale ADC input, the fine register resolution is a $\frac{1}{2}$ LSB peak-to-peak (see Table 7 for N_{COARSE} = 32).

Table 7:	Gain correspondence (FINE)	
N _{FINE}	Gain	V _i to be full-scale (V)
0	0.825	1.212
31	0.878	1.139

The default programmed value is: $N_{FINE} = 0$.

9.1.3 Control register

COAST and HSYNC signals can be inverted by setting the I²C-bus control bits 'Vlevel' and 'Hlevel' respectively. When 'Vlevel' and 'Hlevel' are set to zero respectively, COAST and HSYNC are active HIGH.

The bit 'Edge' defines the rising or falling edge of CKREF to synchronize the PLL. It will be on the rising edge if the bit is at logic 0 and on the falling edge if the bit is at logic 1.

The bits 'Up' and 'Do' are used for the test, to force the charge pump current. These bits have to be logic 0 during normal use.

The bits 'lp0', 'lp1' and 'lp2' control the charge pump current, to increase the bandwidth of the PLL, as shown in Table 8.

lp2	lp1	lp0	Current (μA)
0	0	0	6.25
0	0	1	12.5
0	1	0	25
0	1	1	50
1	0	0	100
1	0	1	200
1	1	0	400
1	1	1	700

Table 8: Charge pump current control

The default programmed value is as follows:

- Charge pump current = 100 μA
- Test bits: no test mode; bits 'Up' and 'Do' at logic 0
- Rising edge of CKREF: bit 'Edge' at logic 0
- COAST and HSYNC inputs are active HIGH: bits 'Vlevel' and 'Hlevel' at logic 0.

9.1.4 VCO register

The bits 'Z2', 'Z1' and 'Z0' enable the internal resistance for the VCO filter to be selected.

Table 9:	VCO register bits		
Z2	Z1	Z0	Resistance (k Ω)
0	0	0	high impedance
0	0	1	128
0	1	0	32
0	1	1	16
1	0	0	8
1	0	1	4
1	1	0	2
1	1	1	1

Table 10: VCO gain control

Vco1	Vco0	VCO gain (MHz/V)	Pixel clock frequency range (MHz)
0	0	15	10 to 20
0	1	20	20 to 40
1	0	35	40 to 70
1	1	50	70 to 110

The bits Vco1 and Vco0 control the VCO gain.

The default programmed value is as follows:

- Internal resistance = 16 k Ω
- VCO gain = 15 MHz/V.

9.1.5 Divider register

This register controls the PLL frequency. The bits are the LSB bits.

The default programmed value is 0011 0010 0000 = 800.

The MSB bits (Di11, Di10 and Di9) and the LSB bit (Di0) have to be programmed before bits 'Di8' to 'Di1' are programmed, to obtain the required divider ratio. Bit 'Di0' is used for the parity divider number (bit 'Di0' = 0 means even number, while bit 'Di0' = 1 means odd number). It should be noted that if the I²C-bus programming is done in mode 1 (bit Mode = 1) and bit 'Di0' has to be toggled, then the registers have to be loaded twice to have the update divider ratio.

9.1.6 Power-down mode

- When the supply is completely switched off, the registers are set to their default values; in that event they have to be reprogrammed if the required settings are different (e.g. through an EEPROM)
- When the device is in Power-down mode, the previously programmed register values remain unaffected.

9.1.7 PHASEA and PHASEB registers

Bit 'Cka' is logic 0 when the used clock is the PLL clock, and logic 1 when the used clock is the external clock.

Bit 'Ckb' is logic 0 when the second clock is not used.

Bits 'Pa4' to 'Pa0' and bits 'Pb4' to 'Pb0' are used to program the phase shift for the clock, CKADCO, CKAO and CKBO (see Table 11). Concerning the PHASEB register, bit 'Ckab' is used to have either CKAO or CKBO at pin CKAO (pin 81).

Pa4 and Pb4	Pa3 and Pb3	Pa2 and Pb2	Pa1 and Pb1	Pa0 and Pb0	Phase shift (deg)
0	0	0	0	0	0
0	0	0	0	1	11.25
	•••				
1	1	1	1	0	337.5
1	1	1	1	1	348.75

Table 11: Phase registers bits

The default programmed value is as follows:

- No external clock: bit 'Cka' is logic 0
- No use of the second clock: bit 'Ckb' is logic 0
- Phase shift for CKAO and CKADCO is 0 deg
- Phase shift for CKBO is 0 deg
- Clock CKAO at pin CKAO: bit 'Ckab' is logic 0.

9.2 I²C-bus protocol

Table 12	Fable 12: I ² C-bus address									
A7	A6	A5	A4	A3	A2	A1	A0			
1	0	0	1	1	ADD2	ADD1	0			

The I²C-bus address of the circuit is 1001 1xx0.

Bits 'A2' and 'A1' are fixed by the potential on pins ADD1 and ADD2. Thus, four TDA8752Bs can be used on the same system, using the addresses for ADD1 and ADD2 with the I²C-bus. Bit 'A0' must always be equal to logic 0 because it is not possible to read the data in the register. The timing and protocol for the I²C-bus are standard. Two sequences are available, see Table 13 and 14.

Table 13: Address sequence for mode 0

Where: *S* = *START* condition, *ACK* = acknowledge and *P* = *STOP* condition.

S	IC ADDRESS	ACK	SUBADDRESS REGISTER1	ACK	DATA REGISTER1 (see Table 4)	ACK	SUBADDRESS REGISTER2	ACK	 Ρ
Table Whe	e 14: Address se re: S = START con	<mark>quence</mark> dition, A	f <mark>or mode 1</mark> CK = acknowledge	and P	= STOP condition.				
S	IC ADDRESS	ACK	SUBADDRESS XXX1 1111	ACK	DATA REGISTER1 (see Table 4)	ACK	DATA REGISTER2	ACK	 Ρ

9.3 3-wire serial bus protocol

For the 3-wire serial bus the first byte refers to the register address which is programmed. The second byte refers to the data to be sent to the chosen register (see Table 4). The acquisition is achieved via SEN.

Using the 3-wire serial bus interface, an indefinite number of ICs can operate on the same system. Pin SEN is used to validate the circuits.

Fig 10. 3-wire serial bus protocol.

DA8752B

10. Limiting values

Table 15: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCA}	analog supply voltage		-0.3	+7.0	V				
V _{CCD}	digital supply voltage		-0.3	+7.0	V				
V _{DDD}	logic supply voltage		-0.3	+7.0	V				
V _{CCO}	output stages supply voltage		-0.3	+7.0	V				
ΔV_{CC}	supply voltage differences								
	$V_{CCA} - V_{CCD}$		-1.0	+1.0	V				
	$V_{CCO} - V_{CCD}; V_{CCO} - V_{DDD}$		-1.0	+1.0	V				
	$V_{CCA} - V_{DDD}; V_{CCD} - V_{DDD}$		-1.0	+1.0	V				
	$V_{CCA} - V_{CCO}$		-1.0	+1.0	V				
V _{i(RGB)}	RGB input voltage range	referenced to AGND	-0.3	+7.0	V				
I _o	output current		_	10	mA				
I _{I(OE)}	input current pin OE		_	1.0	mA				
I _{I(PWDWN)}	input current pin PWDWN		_	1.0	mA				
T _{stg}	storage temperature		-55	+150	°C				
T _{amb}	ambient temperature		0	70	°C				
Т _ј	junction temperature		_	150	°C				

11. Thermal characteristics

Table 16: Thermal characteristics

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	52	K/W

12. Characteristics

Table 17: Characteristics

 $V_{CCA} = V_{11}$ (or V_{19} , V_{27} or V_{99}) referenced to AGND (V_{13} , V_{21} , V_{29} or V_{96}) = 4.75 to 5.25 V; $V_{CCD} = V_{95}$ referenced to DGND (V_{86}) = 4.75 to 5.25 V; $V_{DDD} = V_{40}$ referenced to V_{SSD} (V_{41}) = 4.75 to 5.25 V; $V_{CCO} = V_{59}$ (or V_{69} , V_{79} or V_{85}) referenced to OGND (V_{48} , V_{60} , V_{70} or V_{82}) = 4.75 to 5.25 V; AGND, DGND, OGND and V_{SSD} connected together; $T_{amb} = 0$ to 70 °C; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5$ V and $T_{amb} = 25$ °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V _{CCA}	analog supply voltage		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{DDD}	logic supply voltage		4.75	5.0	5.25	V
V _{CCO}	output stages supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current		_	120	_	mA
9397 750 07338				© Phi	lips Electronics N.V. 200	00. All rights reserved

Table 17: Characteristics...continued

 $V_{CCA} = V_{11} \text{ (or } V_{19}, V_{27} \text{ or } V_{99} \text{) referenced to } AGND (V_{13}, V_{21}, V_{29} \text{ or } V_{96}) = 4.75 \text{ to } 5.25 \text{ V}; V_{CCD} = V_{95} \text{ referenced to } DGND (V_{86}) = 4.75 \text{ to } 5.25 \text{ V}; V_{DDD} = V_{40} \text{ referenced to } V_{SSD} (V_{41}) = 4.75 \text{ to } 5.25 \text{ V}; V_{CCO} = V_{59} \text{ (or } V_{69}, V_{79} \text{ or } V_{85}) \text{ referenced to } OGND (V_{48}, V_{60}, V_{70} \text{ or } V_{82}) = 4.75 \text{ to } 5.25 \text{ V}; AGND, DGND, OGND \text{ and } V_{SSD} \text{ connected together}; T_{amb} = 0 \text{ to } 70 \text{ °C}; \text{ typical values measured at } V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \text{ V} \text{ and } T_{amb} = 25 \text{ °C}; \text{ unless otherwise specified.}$

IoDS IPC-bus and 3-wire serial bus	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
lccb lcco/PLL lcco/PLLdigital supply currentrame input; fak = 110 MHz-40-MAlcco/PLL lcco/PLLoutput Stages supply currentrame input; fak = 110 MHz-8-MAlcco/PLL lcco/PLLanalog PLL supply current8-MAMAlcco/PLL lcco/PLLanalog PLL supply current8-MAMAlcco/PLL vcca+Vccovcca+Vcco40.25VV	I _{DDD}	logic supply current for I ² C-bus and 3-wire serial bus		_	1.0	-	mA
$ \begin{array}{lcccc} & \mbox{output stages supply current ramp input; } f_{dik} = 110 \mbox{ MHz} & - & 26 & - & mA \\ \mbox{lccc} & \mbox{output PL supply current} & & - & 28 & - & mA \\ \mbox{lccc} & \mbox{supply voltage differences} & & - & - & 28 & - & mA \\ \mbox{lccc} & \mbox{supply voltage differences} & & - & - & 28 & - & mA \\ \mbox{lccc} & \mbox{supply voltage differences} & & - & - & 28 & - & mA \\ \mbox{lccc} & \mbox{supply voltage differences} & & - & - & 28 & - & mA \\ \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & - & - & 0.25 & - & + 0.25 & V \\ \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & - & V_{CCD} & - & - & 0.25 & - & + 0.25 & V \\ \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & - & - & 0.25 & - & - & 0.25 & - & - & 0.25 & V \\ \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & - & - & 0.25 & - & - & 0.25 & V \\ \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & - & - & 0.25 & - & - & 0.25 & V \\ \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & \mbox{lccc} & - & - & 0.25 & - & - & 0.25 & V \\ \mbox{lccc} & \ $	I _{CCD}	digital supply current		-	40	-	mA
lccO(PLL) lccA(PLL)output PLL supply current5mAlccA(PLL) lccAanalog PLL supply current28mA $\Delta V_{CC}supply voltage differences0.250.25$	I _{CCO}	output stages supply current	ramp input; f _{clk} = 110 MHz	_	26	-	mA
ICCA(PLL)analog PLL supply current-28-mAAVCCsupply voltage differences <td< td=""><td>I_{CCO(PLL)}</td><td>output PLL supply current</td><td></td><td>_</td><td>5</td><td>-</td><td>mA</td></td<>	I _{CCO(PLL)}	output PLL supply current		_	5	-	mA
ΔV_{CC} supply voltage differences -0.25	I _{CCA(PLL)}	analog PLL supply current		_	28	-	mA
$ \begin{array}{ccccc} & -0.25 & - & +0.25 & \vee \\ & V_{CCO} & -V_{CDD} & & & & & & & & & & & & & & & & & & $	ΔV_{CC}	supply voltage differences					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$V_{CCA} - V_{CCD}$		-0.25	-	+0.25	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		V _{CCO} – V _{CCD} ; V _{CCO} – V _{DDD}		-0.25	-	+0.25	V
$ \begin{array}{ c c c } \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c } \line 1 \\ \hline \begin{tabular}{ c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c c c c } \line 1 \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		V _{CCA} – V _{DDD} ; V _{CCD} – V _{DDD}		-0.25	-	+0.25	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$V_{CCA} - V_{CCO}$		-0.25	-	+0.25	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P _{tot}	total power dissipation	ramp input; f _{clk} = 110 MHz	_	1.1	_	W
R, G and B amplifiersBbandwidth $-3 dB; T_{amb} = 25 °C$ 250 $ -$ MHz t_{set} settling time of the block ADC plus AGCfull-scale (black-to-white) transition; input signal settling time <1 ns (1 to 99%); $T_{amb} = 25 °C$ $ 4.5$ 6 nsGNCOARSEcoarse gain range gain register; code = 32 (see Figure 6) $ -1.67$ $ dB$ Gne gain correction range 	P _{pd}	power dissipation in Power-down mode		-	87	-	mW
Bbandwidth $-3 dB; T_{amb} = 25 ^{\circ}C$ 250 $ -$ MHz t_{set} Setting time of the block ADC plus AGCfull-scale (black-to-white) transition; input signal setting $T_{amb} = 25 ^{\circ}C$ $ 4.5$ 6 ns $G_{NCOARSE}$ Coarse gain range 	R, G and B	amplifiers					
$ \begin{split} \label{eq:results} \begin{tabular}{llllll} transition; input signal settling transition; input signal s$	В	bandwidth	$-3 \text{ dB}; \text{T}_{\text{amb}} = 25 ^{\circ}\text{C}$	250	-	-	MHz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{set}	settling time of the block ADC plus AGC	full-scale (black-to-white) transition; input signal settling time <1 ns (1 to 99%); T _{amb} = 25 °C	_	4.5	6	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G _{NCOARSE}	coarse gain range	$V_{ref} = 2.5 V$; minimum coarse gain register; code = 32 (see Figure 6)	_	-1.67	-	dB
$ \begin{array}{cccc} {\rm G}_{{\rm FINE}} & {\rm fine \ gain \ correction \ range} & {\rm fine \ register \ input \ code \ = \ 0} & - & {\rm old \ } & - & {\rm old \ } & $			maximum coarse gain register; code = 99 (see Figure 6)	_	8	-	dB
$\Delta G_{amp}/\Delta T$ fine register input code = 31 (see Figure 7) $ -0.5$ $ dB$ $\Delta G_{amp}/\Delta T$ amplifier gain stability as a function of temperature $V_{ref} = 2.5 V$ with 100 ppm/°C maximum variation $ 200$ $ppm/°C$ I_{GC} gain current $ \pm 20$ $ \mu A$ t_{stab} amplifier gain adjustment speedHSYNC active; capacitors on pins 8, 16 and 24 = 22 nF $ 25$ $ mdB/\mu s$ $V_{i(p-p)}$ input voltage range (peak-to-peak value)corresponding to full-scale output 0.4 $ 1.2$ V $t_{r(Vi)}$ input voltage rise time $f_i = 110$ MHz; square wave $ 2.5$ ns $t_{f(Vi)}$ input voltage fall time $f_i = 110$ MHz; square wave $ 2.5$ ns	G _{FINE}	fine gain correction range	fine register input code = 0 (see Figure 7)	_	0	-	dB
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			fine register input code = 31 (see Figure 7)	_	-0.5	-	dB
$ \begin{array}{cccc} I_{GC} & \mbox{gain current} & - & \pm 20 & - & \mu A \\ t_{stab} & \mbox{amplifier gain adjustment} & HSYNC active; capacitors on pins 8, 16 and 24 = 22 nF & 25 & - & mdB/\mus \\ \hline V_{i(p-p)} & \mbox{input voltage range} & \mbox{corresponding to full-scale} & 0.4 & - & 1.2 & V \\ t_{r(Vi)} & \mbox{input voltage rise time} & f_i = 110 MHz; square wave & - & - & 2.5 & ns \\ t_{f(Vi)} & \mbox{input voltage fall time} & f_i = 110 MHz; square wave & - & - & 2.5 & ns \\ \end{array} $	$\Delta G_{amp} / \Delta T$	amplifier gain stability as a function of temperature	V _{ref} = 2.5 V with 100 ppm/°C maximum variation	-	-	200	ppm/°C
t_{stab} amplifier gain adjustment speedHSYNC active; capacitors on pins 8, 16 and 24 = 22 nF-25-mdB/µs $V_{i(p-p)}$ input voltage range (peak-to-peak value)corresponding to full-scale output0.4-1.2V $t_{r(Vi)}$ input voltage rise time $f_i = 110$ MHz; square wave2.5ns $t_{f(Vi)}$ input voltage fall time $f_i = 110$ MHz; square wave2.5ns	I _{GC}	gain current		_	±20	-	μΑ
	t _{stab}	amplifier gain adjustment speed	HSYNC active; capacitors on pins 8, 16 and 24 = 22 nF	_	25	-	mdB/μs
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V _{i(p-p)}	input voltage range (peak-to-peak value)	corresponding to full-scale output	0.4	_	1.2	V
$t_{f(Vi)}$ input voltage fall time $f_i = 110$ MHz; square wave $ -$ 2.5 ns	t _{r(Vi)}	input voltage rise time	f _i = 110 MHz; square wave	_	_	2.5	ns
	t _{f(Vi)}	input voltage fall time	f _i = 110 MHz; square wave	_	_	2.5	ns

Table 17: Characteristics...continued

 $V_{CCA} = V_{11} \text{ (or } V_{19}, V_{27} \text{ or } V_{99} \text{) referenced to } AGND (V_{13}, V_{21}, V_{29} \text{ or } V_{96}) = 4.75 \text{ to } 5.25 \text{ V}; V_{CCD} = V_{95} \text{ referenced to } DGND (V_{86}) = 4.75 \text{ to } 5.25 \text{ V}; V_{DDD} = V_{40} \text{ referenced to } V_{SSD} (V_{41}) = 4.75 \text{ to } 5.25 \text{ V}; V_{CCO} = V_{59} \text{ (or } V_{69}, V_{79} \text{ or } V_{85}) \text{ referenced to } OGND (V_{48}, V_{60}, V_{70} \text{ or } V_{82}) = 4.75 \text{ to } 5.25 \text{ V}; AGND, DGND, OGND and } V_{SSD} \text{ connected together}; T_{amb} = 0 \text{ to } 70 \text{ }^{\circ}C; \text{ typical values measured at } V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \text{ V and } T_{amb} = 25 \text{ }^{\circ}C; \text{ unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G _{E(rms)}	channel-to-channel gain matching (RMS value)	maximum coarse gain; T _{amb} = 25 °C	-	1	_	%
		minimum coarse gain; T _{amb} = 25 °C	_	2	_	%
Clamps						
P _{CLP}	precision	black level noise on RGB channels = 10 mV (max.) (RMS value); T _{amb} = 25 °C	-1	_	+1	LSB
t _{COR1}	clamp correction time to within $\pm 10 \text{ mV}$	±100 mV black level input variation; clamp capacitor = 4.7 nF	_	-	300	ns
t _{COR2}	clamp correction time to less than 1 LSB	±100 mV black level input variation; clamp capacitor = 4.7 nF	_	-	10	lines
t _{W(CLP)}	clamp pulse width		500	-	2000	ns
CLPE	channel-to-channel clamp matching		-1	_	+1	LSB
A _{off}	code clamp reference	clamp register input code = 0	-	-63.5	-	LSB
		clamp register input code = 255	_	+64	_	LSB
		clamp register input code = 367	_	+120	_	LSB
		clamp register input code = 398	_	+136	_	LSB
Phase-lock	ed loop					
JPLL(rms)	maximum PLL phase jitter (RMS value)	f _{clk} = 110 MHz; see Table 18	_	112	_	ps
DR	divider ratio		100	_	4095	
f _{ref}	reference clock frequency range		15	-	280	kHz
f _{PLL}	output clock frequency range		12	-	110	MHz
t _{COAST(max)}	maximum coast mode time		_	-	40	lines
t _{recap}	PLL recapture time	when coast mode is aborted	-	3	-	lines
t _{cap}	PLL capture time	in start-up conditions	_	_	5	ms
Φ_{step}	phase shift step	$T_{amb} = 25 \ ^{\circ}C$	_	11.25	_	deg
ADCs						
f _s	maximum sampling frequency		110	_	_	MHz
INL	DC integral non-linearity	from IC analog input to digital output; ramp input; f _{clk} = 110 MHz	_	±0.5	±1.5	LSB

Table 17: Characteristics...continued

 $V_{CCA} = V_{11}$ (or V_{19} , V_{27} or V_{99}) referenced to AGND (V_{13} , V_{21} , V_{29} or V_{96}) = 4.75 to 5.25 V; $V_{CCD} = V_{95}$ referenced to DGND (V_{86}) = 4.75 to 5.25 V; $V_{DDD} = V_{40}$ referenced to V_{SSD} (V_{41}) = 4.75 to 5.25 V; $V_{CCO} = V_{59}$ (or V_{69} , V_{79} or V_{85}) referenced to OGND (V_{48} , V_{60} , V_{70} or V_{82}) = 4.75 to 5.25 V; AGND, DGND, OGND and V_{SSD} connected together; $T_{amb} = 0$ to 70 °C; typical values measured at $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5$ V and $T_{amb} = 25$ °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DNL	DC differential non linearity	from IC analog input to digital output; ramp input; f _{clk} = 110 MHz	-	±0.5	±1.0	LSB
ENOB	effective number of bits	from IC analog input to digital output; 10 kHz sine wave input; ramp input; f _{clk} = 110 MHz	[1] _	7.4	-	bits
Signal-to-n	oise ratio					
S/N	signal-to-noise ratio	maximum gain; f _{clk} = 110 MHz	_	45	_	dB
		minimum gain; f _{clk} = 110 MHz	_	44	_	dB
Spurious fr	ee dynamic range					
SFDR	spurious free dynamic	maximum gain; f _{clk} = 110 MHz	_	60	-	dB
	range	minimum gain; f _{clk} = 110 MHz	-	60	-	dB
Clock timin	g output (CKADCO, CKBO a	and CKAO)				
η_{ext}	ADC clock duty cycle	100 MHz output	45	50	55	%
f _{clk}	clock frequency		_	-	110	MHz
Clock timin	g input (CKEXT)					
f _{clk}	clock frequency		-	-	110	MHz
t _{CPH}	clock pulse width HIGH		3.6	-	-	ns
t _{CPL}	clock pulse width LOW		4.5	-	_	ns
t _{d(CLKO)}	delay from CKEXT to	INV set to LOW	9.5	10.1	10.7	ns
	CKADCO	INV set to HIGH	-	$10.1 + \frac{1}{2}t_{clk}$	-	ns
Δt -t _{d(CLKO)}	time difference between samples	when operated in the same supply and temperature conditions	-	0.1	0.3	ns
Data timing	(see Figure 11); f _{clk} = 110 M	IHz; C _L = 10 pF; ^[2]				
t _{d(s)}	sampling delay time	referenced to CKADCO	_	-	-	ns
t _{d(o)}	output delay time		_	-2	-1.5	ns
t _{h(o)}	output hold time		1.5	2.3	-	ns
3-state outp	out delay time (see Figure 12	2)				
t _{dZH}	output enable HIGH		-	12	-	ns
t _{dZL}	output enable LOW		-	10	-	ns
t _{dHZ}	output disable HIGH		-	50	-	ns
t _{dLZ}	output disable LOW		-	65	-	ns
PLL clock of	output					
V _{OL}	LOW-level output voltage	I _o = 1 mA	-	0.3	0.4	V
V _{OH}	HIGH-level output voltage	$I_o = -1 \text{ mA}$	2.4	3.5	-	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$	-	2	-	mA
I _{OH}	HIGH-level output current	V _{OH} = 2.7 V	-	-0.4	-	mA

Table 17: Characteristics...continued

 $V_{CCA} = V_{11} \text{ (or } V_{19}, V_{27} \text{ or } V_{99} \text{) referenced to } AGND (V_{13}, V_{21}, V_{29} \text{ or } V_{96}) = 4.75 \text{ to } 5.25 \text{ V}; V_{CCD} = V_{95} \text{ referenced to } DGND (V_{86}) = 4.75 \text{ to } 5.25 \text{ V}; V_{DDD} = V_{40} \text{ referenced to } V_{SSD} (V_{41}) = 4.75 \text{ to } 5.25 \text{ V}; V_{CCO} = V_{59} \text{ (or } V_{69}, V_{79} \text{ or } V_{85}) \text{ referenced to } OGND (V_{48}, V_{60}, V_{70} \text{ or } V_{82}) = 4.75 \text{ to } 5.25 \text{ V}; AGND, DGND, OGND and } V_{SSD} \text{ connected together}; T_{amb} = 0 \text{ to } 70 \text{ }^{\circ}C; \text{ typical values measured at } V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 \text{ V and } T_{amb} = 25 \text{ }^{\circ}C; \text{ unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ADC data o	utputs					
V _{OL}	LOW-level output voltage	$I_o = 1 \text{ mA}$	-	0	0.4	V
V _{OH}	HIGH-level output voltage	$I_o = -1 \text{ mA}$	2.4	V _{CCD}	_	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$	_	2	_	mA
I _{OH}	HIGH-level output current	V _{OH} = 2.7 V	_	-0.4	_	mA
TTL digital	inputs (CKREF, COAST, CKE	EXT, INV, HSYNC and CLP)				
V _{IL}	LOW-level input voltage		_	_	0.8	V
V _{IH}	HIGH-level input voltage		2.0	_	_	V
IIL	LOW-level input current	V _{IL} = 0.4 V	400	_	_	μA
I _{IH}	HIGH-level input current	V _{IH} = 2.7 V	_	-	100	μΑ
Zi	input impedance		_	4	_	kΩ
Ci	input capacitance		_	4.5	_	pF
TTL digital	inputs (PWDWN, OE)					
V _{IL}	LOW-level input voltage		_	_	0.8	V
V _{IH}	HIGH-level input voltage		2.0	_	_	V
I _{I(OE)}	input current pin OE	with 10 k Ω resistor	[3] _	_	1.0	mA
I _{I(PWDWN)}	input current pin PWDWN	with 10 k Ω resistor	[3] _	-	1.0	mA
3-wire seria	Il bus					
t _{rst}	reset time of the chip before 3-wire serial bus communication		-	600	_	ns
t _{su}	data set-up time		_	100	_	ns
t _h	data hold time		_	100	_	ns
I ² C-bus ^[4]						
f _{SCL}	clock frequency		0	_	100	kHz
t _{BUF}	time the bus must be free before new transmission can start		4.7	_	_	μs
t _{HD;STA}	start condition hold time		4.0	_	_	μs
t _{SU;STA}	start condition set-up time	repeated start	4.7	-	_	μs
t _{CKL}	LOW-level clock period		4.7	_	_	μs
t _{CKH}	HIGH-level clock period		4.0	-	_	μs
t _{SU;DAT}	data set-up time		250	_	_	ns
t _{HD;DAT}	data hold time		0	_	_	ns
t _r	SDA and SCL rise time	f _{SCL} = 100 kHz	_	-	1.0	μs
t _f	SDA and SCL fall time	f _{SCL} = 100 kHz	_	_	300	ns
t _{SU;STOP}	stop condition set-up time		4.0	_	_	μs
C _{L(bus)}	bus line capacitive loading		_	_	400	pF

TDA8752B

- Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8000 acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half clock frequency (NYQUIST frequency). Conversion-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
- [2] Output data acquisition is available after the maximum delay time $t_{d(o)}$, which is the time during which the data is available. All the timings are given for a 10 pF capacitive load. A higher load can be used but the timing must then be rechecked.
- [3] The input current must be limited in accordance with the limiting values.
- [4] The I²C-bus timings are given for a frequency of 100 kbit/s (100 kHz). This bus can be used at a frequency of 400 kbit/s (400 kHz).

Fig 12. Timing diagram and test conditions of 3-state output delay time.

$v_{CCA} - v_{DDD} - v_{CCD} - v_{CCO}$	$CCA = VDDD = VCCD = VCCO = 3V$, $T_{amb} = 23V$.									
Video standards	f _{ref}	f _{cik}	Ν	Ko	C _Z	C _P		Z	Long-term time	e jitter ^[1]
	(KHZ)	(MHZ)		(WHZ/V)	(nF)	(nF)	(μΑ)	(KΩ)	RMS-value (ps)	peak-to-peak value (ns)
CGA: 640 × 200	15.75	14.3	912	15	39	0.15	100	8	593	3.56
VGA: 640 × 480	31.5	25.18	800	20	39	0.15	200	4	255	1.53
VGA: 640 × 482	48.07	38.4	800	20	39	0.15	400	4	173	1.04
VESA: 800 × 600 (SVGA 72 Hz)	48.08	50	1040	35	39	0.15	200	4	200	1.2
VESA: 1024 × 768 (XGA 75 Hz)	60.02	78.75	1312	50	39	0.15	700	2	122	0.73
SUN: 1152 × 900	66.67	100	1500	50	39	0.15	400	4	115	0.69
VESA: 1280 × 1024 (SXGA 60 Hz)	63.98	108	1688	50	39	0.15	400	4	112	0.67

Table 18: Examples of PLL settings and performance $V_{CCA} = V_{DDD} = V_{CCD} = V_{CCO} = 5 V: T_{omb} = 25 °C.$

[1] PLL long-term time jitter is measured at the end of the video line, where it is at its maximum.

13. Application information

All supply pins have to be decoupled, with two capacitors: one for the high frequencies (approximately 1 nF) and one for the low frequencies (approximately 100 nF or higher). If a capacitor of 39 nF between pins CZ and CP is not available, use a higher one as close as possible to this value. Resistors R1 and R2 must be connected: the recommended value is 10 k Ω .

Fig 13. Application diagram.

14. Package outline

Fig 14. SOT317-2 package outline.

15. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

16. Soldering

16.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

16.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C small/thin packages.

16.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

9397 750 07338

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300 \,^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

16.5 Package related soldering information

Table 19:	Suitability of surface mount IC packages for wave and reflow soldering
	methods

Package	Soldering method		
	Wave	Reflow ^[1]	
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable	
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ^[2]	suitable	
PLCC ^[3] , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ^{[3][4]}	suitable	
SSOP, TSSOP, VSO	not recommended ^[5]	suitable	

- [1] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [2] These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- [3] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [4] Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [5] Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

17. Revision history

Table 20: Revision history

Rev	Date	CPCN	Description
3	20000721		Product specification
2	20000110		Preliminary specification
1	19991111		Objective specification

18. Data sheet status

Datasheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

19. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

21. Licenses

Purchase of Philips I²C components

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

Philips Semiconductors - a worldwide company

Argentina: see South America Australia: Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Tel. +43 160 101, Fax. +43 160 101 1210 Belarus: Tel. +375 17 220 0733, Fax. +375 17 220 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Tel. +359 268 9211, Fax. +359 268 9102 Canada: Tel. +1 800 234 7381 China/Hong Kong: Tel. +852 2 319 7888, Fax. +852 2 319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Tel. +45 3 288 2636, Fax. +45 3 157 0044 Finland: Tel. +358 961 5800, Fax. +358 96 158 0920 France: Tel. +33 14 099 6161, Fax. +33 14 099 6427 Germany: Tel. +49 40 23 5360, Fax. +49 402 353 6300 Hungary: see Austria India: Tel. +91 22 493 8541, Fax. +91 22 493 8722 Indonesia: see Singapore Ireland: Tel. +353 17 64 0000, Fax. +353 17 64 0200 Israel: Tel. +972 36 45 0444, Fax. +972 36 49 1007 Italy: Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Tel. +81 33 740 5130, Fax. +81 3 3740 5057 Korea: Tel. +82 27 09 1412, Fax. +82 27 09 1415 Malaysia: Tel. +60 37 50 5214, Fax. +60 37 57 4880 Mexico: Tel. +9-5 800 234 7381 Middle East: see Italy

For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 272 4825 Netherlands: Tel. +31 40 278 2785, Fax. +31 40 278 8399 New Zealand: Tel. +64 98 49 4160, Fax. +64 98 49 7811 Norway: Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Tel. +63 28 16 6380, Fax. +63 28 17 3474 Poland: Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Romania: see Italy Russia: Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Tel. +55 11 821 2333. Fax. +55 11 829 1849 Spain: Tel. +34 33 01 6312, Fax. +34 33 01 4107 Sweden: Tel. +46 86 32 2000, Fax. +46 86 32 2745 Switzerland: Tel. +41 14 88 2686, Fax. +41 14 81 7730 Taiwan: Tel. +886 22 134 2451, Fax. +886 22 134 2874 Thailand: Tel. +66 23 61 7910, Fax. +66 23 98 3447 Turkey: Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: Tel. +381 11 3341 299, Fax. +381 11 3342 553

Internet: http://www.semiconductors.philips.com

(SCA70)

Contents

1	General description	. 1
2	Features	. 1
3	Applications	. 2
4	Quick reference data	. 2
5	Ordering information	. 3
6	Block diagram	. 4
7	Pinning information	. 7
7.1	Pinning	. 7
7.2	Pin description	. 8
8	Functional description	11
8.1	IC analog video inputs	11
8.2	Clamps	11
8.3	Variable gain amplifiers	11
8.4		13
0.0 8.6	ADC oulpuis	13
8.7	l ² C-bus and 3-wire serial bus interface	16
9	I ² C-bus and 3-wire serial bus interfaces	17
9 1	Register definitions	17
9.1.1	Offset register	17
9.1.2	Coarse and fine registers	18
9.1.3	Control register	19
9.1.4	VCO register	19
9.1.5	Divider register	21
9.1.6	Power-down mode	21
9.1.7	PHASEA and PHASEB registers	21
9.Z 0.3	3-wire serial bus protocol	22
10		20
10	Thermal characteristics	27
11	Characteristics	24
12	Application information	24
13		31
14		32
15		33
16	Soldering	33
16.1	Introduction to soldering surface mount packages	33
16.2	Reflow soldering	33
16.3	Wave soldering	33
16.4	Manual soldering	34
16.5	Package related soldering information	34
17	Revision history	35
18	Data sheet status	36
19	Definitions	36
20	Disclaimers	36
21	Licenses	36

© Philips Electronics N.V. 2000. Pri

Printed in The Netherlands

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Let's make things better.