

CA3086

General Purpose NPN Transistor Array

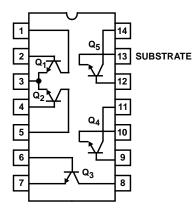
November 1996

Applications

- Three Isolated Transistors and One Differentially Connected Transistor Pair For Low-Power Applications from DC to 120MHz
- General-Purpose Use in Signal Processing Systems Operating in the DC to 190MHz Range
- Temperature Compensated Amplifiers
- See Application Note, AN5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for Suggested Applications

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
CA3086	-55 to 125	14 Ld PDIP	E14.3
CA3086M (3086)	-55 to 125	14 Ld SOIC	M14.15
CA3086M96 (3086)	-55 to 125	14 Ld SOIC Tape and Reel	M14.15
CA3086F	-55 to 125	14 Ld CERDIP	F14.3


Description

The CA3086 consists of five general-purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially connected pair.

The transistors of the CA3086 are well suited to a wide variety of applications in low-power systems at frequencies from DC to 120MHz. They may be used as discrete transistors in conventional circuits. However, they also provide the very significant inherent advantages unique to integrated circuits, such as compactness, ease of physical handling and thermal matching

Pinout

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

Absolute Maximum Ratings

The following ratings apply for each transistor in the device:	
Collector-to-Emitter Voltage, V _{CEO}	. 15V
Collector-to-Base Voltage, V _{CBO}	. 20V
Collector-to-Substrate Voltage, V _{CIO} (Note 1)	
Emitter-to-Base Voltage, V _{EBO}	5V
Collector Current, I _C	50mA

Operating Conditions

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (^o C/W)	θ _{JC} (^o C/W)
CERDIP Package	150	75
PDIP Package	180	N/A
SOIC Package	220	N/A
Maximum Power Dissipation (Any one tran	nsistor)	300mW
Maximum Junction Temperature (Hermetic I	Packages)	175 ⁰ C
Maximum Junction Temperature (Plastic F	Package)	150 ⁰ C
Maximum Storage Temperature Range		5 ⁰ C to 150 ⁰ C
Maximum Lead Temperature (Soldering 1)	0s)	300 ⁰ C
(SOIC - Lead Tips Only)		

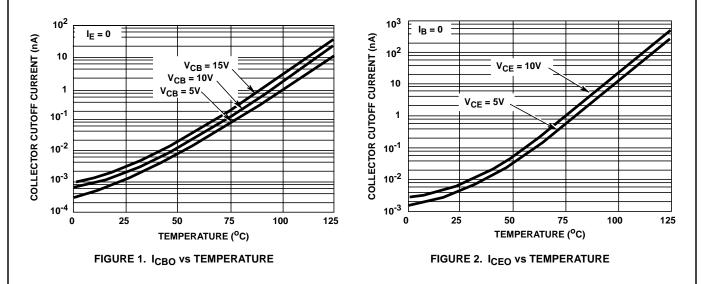
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

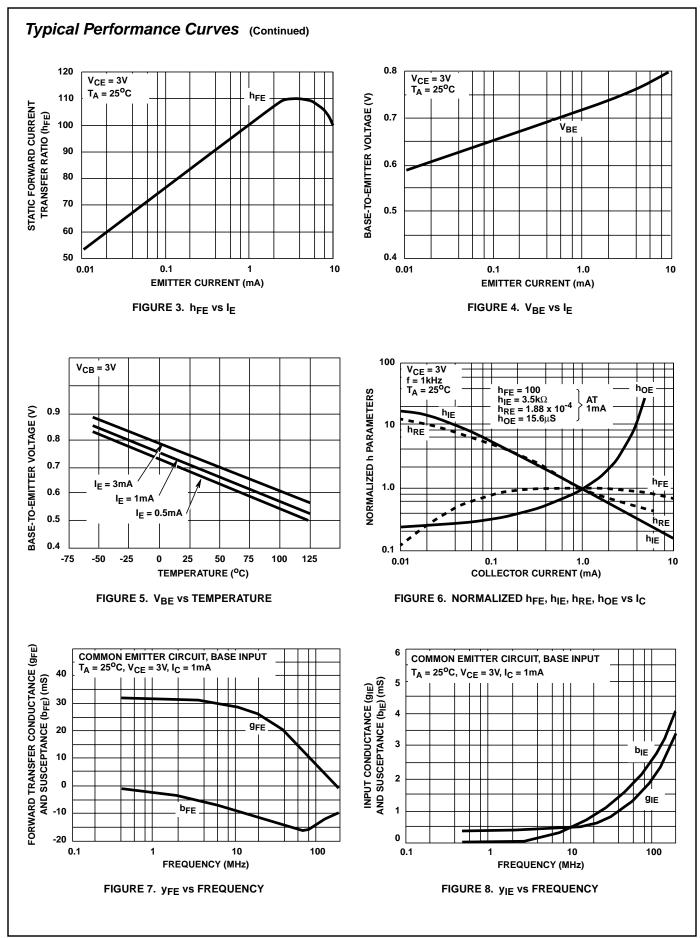
NOTES:

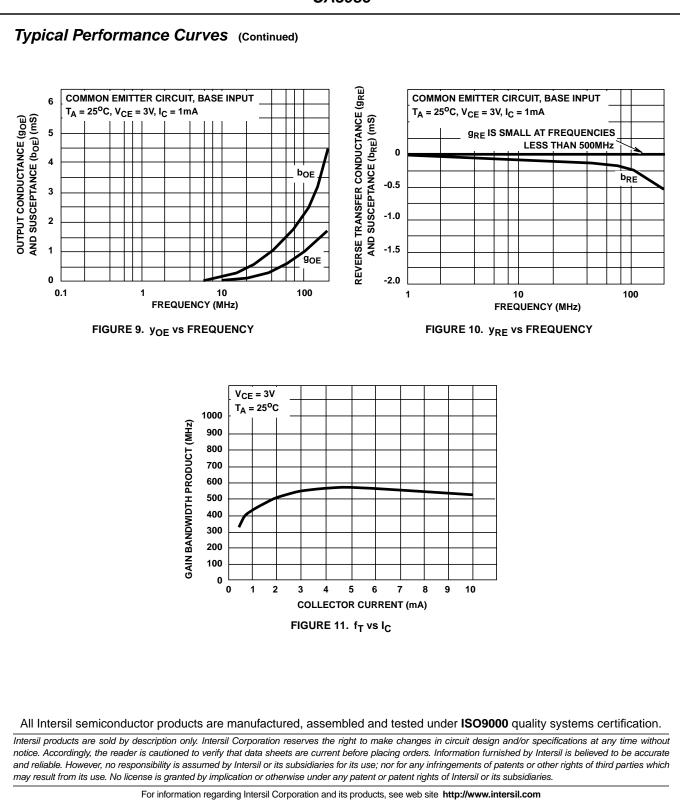
- The collector of each transistor in the CA3086 is isolated from the substrate by an integral diode. The substrate (Terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. To avoid undesirable coupling between transistors, the substrate (Terminal 13) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications T_A = 25^oC, For Equipment Design

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Collector-to-Base Breakdown Voltage	V _{(BR)CBO}	$I_{C} = 10 \mu A, I_{E} = 0$	20	60	-	V
Collector-to-Emitter Breakdown Voltage	V _{(BR)CEO}	I _C = 1mA, I _B = 0	15	24	-	V
Collector-to-Substrate Breakdown Voltage	V _{(BR)CIO}	$I_{C} = 10 \mu A, I_{CI} = 0$	20	60	-	V
Emitter-to-Base Breakdown Voltage	V _{(BR)EBO}	$I_{E} = 10 \mu A, I_{C} = 0$	5	7	-	V
Collector-Cutoff Current (Figure 1)	I _{CBO}	$V_{CB} = 10V, I_E = 0,$	-	0.002	100	nA
Collector-Cutoff Current (Figure 2)	ICEO	$V_{CE} = 10V, I_B = 0,$	-	(Figure 2)	5	μΑ
DC Forward-Current Transfer Ratio (Figure 3)	h _{FE}	$V_{CE} = 3V$, $I_C = 1mA$	40	100	-	


Electrical Specifications T_A = 25^oC, Typical Values Intended Only for Design Guidance


PARAMETER	SYMBOL	TEST CONDITIONS		TYPICAL VALUES	UNITS
DC Forward-Current Transfer Ratio	h _{FE}	$V_{CE} = 3V$	I _C = 10mA	100	
(Figure 3)			I _C = 10μΑ	54	
Base-to-Emitter Voltage (Figure 4)	V _{BE}	V _{CE} = 3V	I _E = 1 mA	0.715	V
			I _E = 10mA	0.800	V
V _{BE} Temperature Coefficient (Figure 5)	$\Delta V_{BE} / \Delta T$	V _{CE} = 3V, I _C = 1 mA		-1.9	mV/ ^o C
Collector-to-Emitter Saturation Voltage	V _{CE SAT}	I _B = 1mA, I _C = 10mA		0.23	V
Noise Figure (Low Frequency)	NF	$ f = 1 kHz, V_{CE} = 3 V, I_C = 100 \mu A, \\ R_S = 1 k \Omega $		3.25	dB


PARAMETER	SYMBOL	TEST CONDITIONS	TYPICAL VALUES	UNITS
Low-Frequency, Small-Signal Equivalent- Circuit Characteristics:		$f = 1kHz, V_{CE} = 3V, I_C = 1mA$		
Forward Current-Transfer Ratio (Figure 6)	h _{FE}		100	-
Short-Circuit Input Impedance (Figure 6)	h _{IE}		3.5	kΩ
Open-Circuit Output Impedance (Figure 6)	h _{OE}		15.6	μS
Open-Circuit Reverse-Voltage Transfer Ratio (Figure 6)	h _{RE}		1.8 X 10 ⁻⁴	-
Admittance Characteristics:		f = 1MHz,V _{CE} = 3V, I _C = 1mA		
Forward Transfer Admittance (Figure 7)	УFE		31 - j1.5	mS
Input Admittance (Figure 8)	УІЕ		0.3 + j0.04	mS
Output Admittance (Figure 9)	УОЕ		0.001 + j0.03	mS
Reverse Transfer Admittance (Figure 10)	УRE		See Figure 10	-
Gain-Bandwidth Product (Figure 11)	f _T	$V_{CE} = 3V$, $I_C = 3mA$	550	MHz
Emitter-to-Base Capacitance	C _{EBO}	$V_{EB} = 3V, I_E = 0$	0.6	pF
Collector-to-Base Capacitance	C _{CBO}	$V_{CB} = 3V, I_{C} = 0$	0.58	pF
Collector-to-Substrate Capacitance	C _{CIO}	$V_{C I} = 3V, I_{C} = 0$	2.8	pF

Electrical Specifications $T_A = 25^{\circ}C$, Typical Values Intended Only for Design Guidance (Continued)

Typical Performance Curves

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029