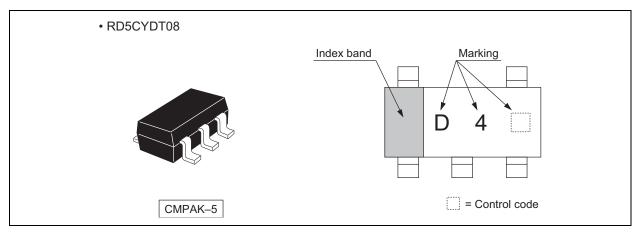
RENESAS

RD5CYDT08

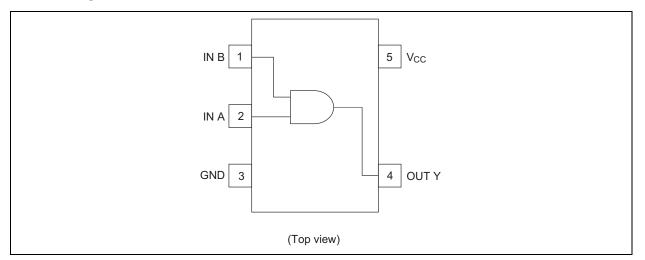
IGBT Driver / CMOS Logic Level Shifter

REJ03D0181-0700 Rev.7.00 Apr 22, 2008

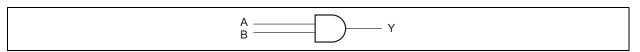
Description


The RD5CYDT08 has two-input AND gate in a 5 pin package. This product is suited as IGBT Driver IC for the strobe.

Features

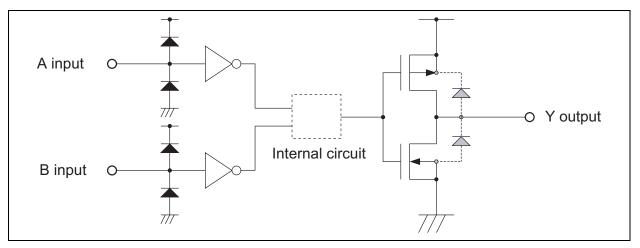

- Supplied on emboss taping for high-speed automatic mounting.
- TTL compatible input level
- Supply voltage range : 4.0 to 6.0 V
- Operating temperature range: -40 to $+85^{\circ}$ C
- Logic–level translate function
 3.0 V CMOS logic → 5.0 V CMOS logic
- High drive current I_{OH} short = -130 mA (min) (@V_{CC} = 5.0 V)
- Low sink current I_{OL} short = 40 mA (max) (@V_{CC} = 5.0 V)
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
RD5CYDT08CME	CMPAK–5 pin	PTSP0005ZC-A (CMPAK–5V)	СМ	E (3,000 pcs/reel)


Outline and Article Indication

Pin Arrangement

Logic Diagram


Function Table

Inp	Inputs		
A	В	Output Y	
L	L	L	
Н	L	L	
L	Н	L	
Н	Н	Н	

H: High level

L: Low level

Block Diagram

RENESAS

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	Vcc	-0.5 to 7.0	V	
Input voltage range *1	VI	-0.5 to V _{CC} + 0.5	V	
Output voltage range *1, 2	Vo	-0.5 to V _{CC} + 0.5	V	
Input clamp current	I _{IK}	±20	mA	$V_{I} < 0 \text{ or } V_{I} > V_{CC}$
Output clamp current	I _{ок}	±50	mA	$V_0 < 0$ or $V_0 > V_{CC}$
Continuous output current		-200	mA	$V_0 = 0$
Continuous output current	Ι _Ο	100	- IIIA	$V_{O} = V_{CC}$
Continuous current through	I _{CC} or I _{GND}	±200	mA	
V _{CC} or GND				
Maximum power dissipation	PT	200	mW	
at Ta = 25°C (in still air) *3	• •			
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. When Over shoot / Under shoot pulse width is under 10 ns, input and output voltage permit to -15 V or V_{CC}+1.5 V.
- 2. This value is limited to 5.5 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

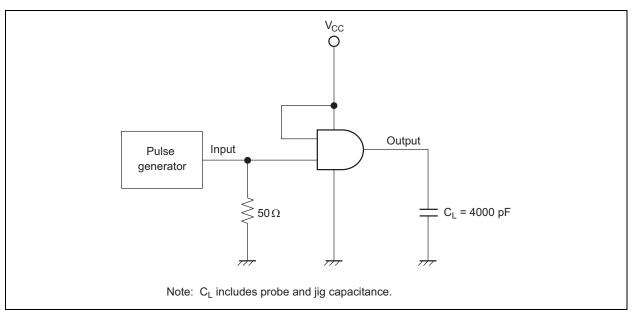
Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	Vcc	4.0	6.0	V	
Input voltage range	VI	0	Vcc	V	
Output voltage range	Vo	0	V _{cc}	V	
Operating free-air temperature	Ta	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristic

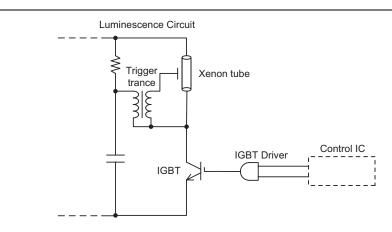
Ta = -40 to $85^{\circ}C$


Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test condition
Input voltage	V _{IH}	4.5 to 5.5	2.0	—	—	V	
input voltage	VIL	4.5 to 5.5	_	—	0.8	v	
Output current	I _{OH} short	5.0	-100	-130	-160	m۸	$V_0 = 0 V$
Output current	I _{OL} short	5.0	30	40	50	mA	$V_0 = V_{CC}$
Input current	l _{iN}	5.5	_	—	±5	μΑ	$V_{IN} = 5.5 \text{ V or GND}$
Quiescent supply current	Icc	5.5	_	_	10	ΠА	$V_{IN} = V_{CC} \text{ or GND},$ $I_O = 0$
Input capacitance	CIN	5.0		2.5		pF	$V_{IN} = V_{CC}$ or GND

Switching Characteristics

$V_{CC}=5.0\pm0.5~V$

Item	Symbol	Ta = -40 to 85°C			Unit	Test	FROM	то
nem	Symbol	Min	Тур	Max	Unit	Conditions	(Input)	(Output)
Propagation delay time	t _{d(ON)}		—	70		ns C _L = 4000 pF	A or B	Y
Fiopagation delay time	t _{d(OFF)}		—	140	n 0			
Output rise time	tr	_	—	800	ns			
Output fall time	t _f	—	—	1500				


Test Circuit

Waveforms

Application Example (Strobe circuit)

Combination example

SYSTEM	IGBT	IGBT Driver	Control IC
3.3 V	RJP4002ANS RJP4002ASA	RD3CYD08 RD3CYDT08	3.3 V signal
5.0 V	RJP4003ANS RJP4003ASA	RD5CYD08 RD5CYDT08	5.0 V signal 3.3 V signal

IGBT Driver Lineup

TYPE No.	Specification	Package
RD3CYD08	$ V_{CC} = 2.0 \text{ to } 3.6 \text{V CMOS lever input} \\ I_{OH}(\text{short}) = -130 \text{mA(typ)} @ V_{CC} = 3.3 \text{V} \\ I_{OL}(\text{short}) = 45 \text{mA(typ)} @ V_{CC} = 3.3 \text{V} $	CMPAK-5 VSON-5
RD3CYDT08	$ V_{CC} = 2.0 \text{ to } 3.6 \text{V CMOS lever input} \\ I_{OH}(\text{short}) = -130 \text{mA(typ)} @ V_{CC} = 3.3 \text{V} \\ I_{OL}(\text{short}) = 45 \text{mA(typ)} @ V_{CC} = 3.3 \text{V} $	CMPAK-5
RD5CYD08	$ V_{CC} = 4.0 \text{ to } 6.0 \text{V CMOS lever input} \\ I_{OH}(\text{short}) = -130 \text{mA}(\text{typ}) @ V_{CC} = 5.0 \text{V} \\ I_{OL}(\text{short}) = 40 \text{mA}(\text{typ}) @ V_{CC} = 5.0 \text{V} $	CMPAK-5
RD5CYDT08	$ \begin{array}{l} V_{CC} = 4.0 \text{ to } 6.0 V \ TTL \ lever \ input \\ I_{OH}(short) = -130 mA(typ) @ V_{CC} = 5.0 V \\ I_{OL}(short) = & 40 mA(typ) @ V_{CC} = 5.0 V \end{array} $	GIVIF AR-5

IGBT Lineup

TYPE No.	Specification	Package
RJP4002ANS	V_{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	VSON-8
RJP4002ASA	V_{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	TSSOP-8
RJP4003ANS	V_{CES} = 400V(max), I _{CP} = 150A(max), 4V drive	VSON-8
RJP4003ASA	V_{CES} = 400V(max), I _{CP} = 150A(max), 4V drive	TSSOP-8

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: States

 Present States

 States

 Present State

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510