DATA SHEET

Part No.	AN6783S
Package Code No.	SOP008-P-0225G

Publication date: May 2008

Panasonic

Contents

Overview	3
■ Features	3
Applications	3
■ Package	3
■ Туре	3
Block Diagram	4
■ Pin Descriptions	5
Absolute Maximum Ratings	6
■ Operating Supply Voltage Range	6
Electrical Characteristics	7
Electrical Characteristics (Reference values for design)	8
■ Technical Data	
Truth Table	9
I/O block circuit diagrams and pin function descriptions	10
• $P_D - T_a$ diagram	11
Main Characteristics	12
Usage Notes	14

AN6783S

IC for long interval timer

Overview

AN6783S is an IC designed for a long interval timer. It is oscillated by using the external resistor and capacitor, and the oscillation frequency divided by a 15-stage F.F. is provided as the output.

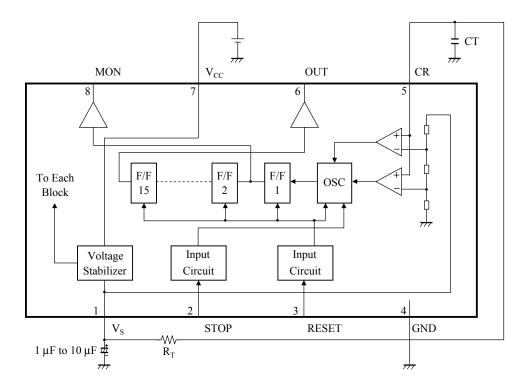
It is frequency divider type, so that a long interval timer can be constructed by using a capacitor with small capacitance.

Features

- Oscillation frequency dispersion of IC itself is small (±5%)
- \bullet Oscillation frequency can be checked by 1/2 $f_{OSC}\,monitor\,pin$
- Wide operating supply voltage range (3.2 V to 18 V)
- Small consumption current (3 mA typ.)

Applications

• Timer


Package

• 8 pin Plastic Small Outline Package (SO Type)

■ Туре

• Silicon Monolithic Bipolar IC

Block Diagram

Panasonic

Pin Descriptions

Pin No.	Pin name	Туре	Description
1	Vs	Output	Reference voltage
2	STOP	Input	Oscillation stop input
3	RESET	Input	Reset input
4	GND	Ground	GND
5	CR		C, R connection
6	OUT	Output	Output
7	V _{CC}	Power supply	Supply voltage
8	MON	Output	Monitor pin

Panasonic

Absolute Maximum Ranges

A No.	Parameter	Symbol	Rating	Unit	Note
1	Supply voltage	V _{CC}	20	V	*1
2	Supply current	I _{CC}	7	mA	—
3	Power dissipation	P _D	122	mW	*2
4	Operating ambient temperature	T _{opr}	-35 to +85	°C	*3
5	Storage temperature	T _{stg}	-55 to +125	°C	*3
6	STOP pin voltage	V _{STOP}	0 to 18	V	*4
7	RESET pin voltage	V _{RESET}	0 to 18	V	*4
8	CR pin voltage	V _{CR}	0 to 3	V	*4
9	OUT pin current	I _{OUT}	-15 to +15	mA	*4

Note) *1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 : The power dissipation shown is the value at $T_a = 85^{\circ}C$ for the independent (unmounted) IC package.

When using this IC, refer to the \bullet P_D-T_a diagram in the \blacksquare Technical Data and use under the condition not exceeding the allowable value.

*3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*4 : Do not apply external currents or voltages to any pin not specifically mentioned.

For the circuit currents, "+" denotes current flowing into the IC, and "-" denotes current flowing out of the IC.

Operating supply voltage range

Parameter	Symbol	Rating	Unit	Note
Supply voltage range	V _{CC}	3.2 to 18.0	V	

Note) The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

Panasonic

Electrical Characteristics

Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

В	Parameter	Symbol	Conditions	Limits			Unit	Note
No.	Parameter	Symbol	Conditions		Тур	Max		
1	Quiescent supply current	I _{CC}	$V_{\rm CC} = 5 \text{ V}$	2.0	4.0	5.0	mA	—
2	Internal reference voltage	Vs	$V_{\rm CC} = 5 \text{ V}, I_{\rm S} = -3 \text{ mA}$	2.40	2.55	2.70	V	—
3	High-level input current	$I_{\rm IH}$	$V_{CC} = 18 \text{ V}, V_{IH} = 18 \text{ V}$			10	μΑ	_
4	Low-level input current	I_{IL}	$V_{\rm CC} = 18 \text{ V}, V_{\rm IL} = 0 \text{ V}$	-100			μΑ	_
5	High-level OUT pin voltage	V _{OH}	$V_{\rm CC} = 18 \text{ V}, I_{\rm OH} = -10 \text{ mA}$	14.0	16.0	18.0	V	_
6	Low-level OUT pin voltage	V _{OL}	$V_{CC} = 3.2 \text{ V}, I_{OL} = 10 \text{ mA}$			0.4	V	_
7	High-level MON pin voltage	$V_{\rm MH}$	$V_{\rm CC} = 18 \text{ V}$	17.8		18.0	V	_
8	Low-level MON pin voltage	V_{ML}	$V_{\rm CC} = 3.2 \rm V$			0.4	V	_
9	Oscillation frequency precision f _{OSC}		$V_{CC} = 5 \text{ V}, R_T = 1 \text{ k}\Omega$ $C_T = 0.1 \mu\text{F}$	9.0	9.5	10.0	kHz	_
10	Oscillation frequency fluctuation with supply voltage	Δf_V	$V_{CC} = 3.2 V \text{ to } 5 V \text{ or } 5 V \text{ to } 18 V$	-5.0		+5.0	%	_
11	High-level input voltage	V_{IH}	$V_{\rm CC} = 5 \text{ V}$	2.0	_	_	V	_
12	Low-level input voltage	V_{IL}	$V_{\rm CC} = 5 \text{ V}$		_	0.8	V	_

■ Electrical Characteristics (Reference values for design) Note) The data show the changing amount within T_a = -30°C to +85°C when the values at T_a = 25°C is taken as the reference. The characteristics listed below are reference values for design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

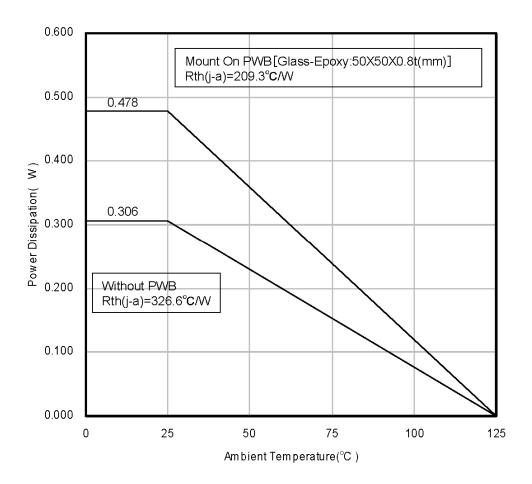
В	Deremeter	Cumb al	Conditions	Reference values			l lait	Nata
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit N	Note
13	Oscillation frequency temperature dependency	Δfr	$V_{CC} = 5 V, R_T = 1 k\Omega$ $C_T = 0.1 \mu F$	-5.0	—	+5.0	%	

Panasonic

Technical Data

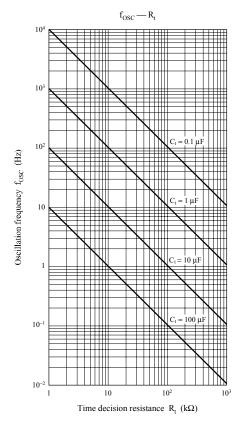
• Truth Table

Mode	V _{RESET}	V _{STOP}	Oscillation (V _{CR})	Frequency division (Count)	V _{OUT}	V _{MON}
Reset	Low	_	Stop (High)	Cleared	High	High
Stop	High	Low	Stop (High)	Stop Holds the previous state	Stop Holds the previous state	Stop Holds the previous state
Operation	High	High	Oscillation	Counting	1/32768-frequency division pulse output	1/2-frequency division pulse output

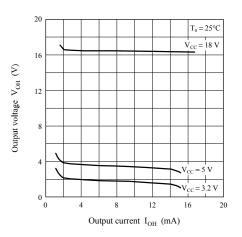

■ Technical Data (continued)

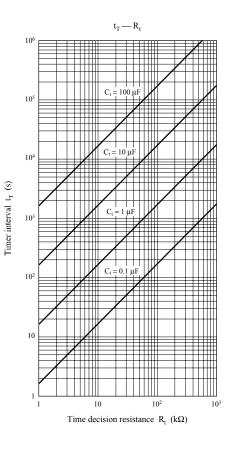
• I/O block circuit diagram and pin function descriptions

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

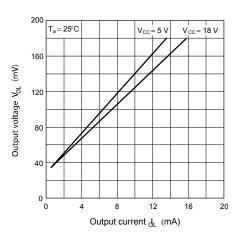

Pin No.	DC voltage	Internal circuit	Description
1	2.55 V		Stabilized power supply output pin. Reference voltage source for oscillation circuit.
2	_	STOP	Oscillation stop input pin. Only the oscillation circuit stops when this pin becomes low-level. (F.F. is not cleared) When not used, the pin should be open or connected to V_{CC} .
3	_	V _{cc} V _s RESET	Reset input pin. F.F. is reset when the pin becomes low-level and is set to the default state. When not used, the pin should be open or connected to V_{CC} . The reset is applied by rising VCC from a voltage below 0.8 V (power-on reset function).
4	0 V		GND pin
5	0.7 V to 1.8 V		C, R connection pin. The oscillation frequency is determined by an external resistor and capacitor. When applying a pulse to this pin from the outside, the voltage should be within the range of 0 V to 3 V.
6	High-level $V_{CC} - 1.4 V$ Low-level < 0.4 V	v _{cc} ↓ v _{cc} ↓ v _{cc} ↓ v _{cc}	Output pin. The frequency which is $1/32768$ of the oscillation frequency is outputted. Should be used with the output current within the range of -10 mA to $+10$ mA.
7	_		Supply voltage pin
8	High-level V _{CC} Low-level < 0.4 V	V_{CC} $R_{A} = 10 \text{ k}\Omega \text{ to } 40 \text{ k}\Omega$ MON	Oscillation frequency monitor pin The output is given from the first stage of F.F. and the frequency which is 1/2 of oscillation frequency f_{OSC} is outputted. If not used, the pin should be open. This pin is provided for connecting probe such as oscilloscope. Use with the output current of 100 µA or less.

■ Technical Data (continued) • P_D — T_a diagram

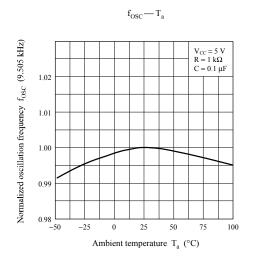


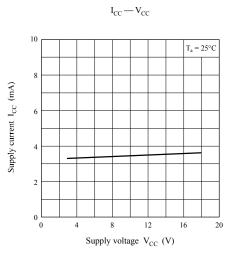


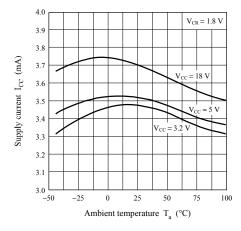
Main Characteristics

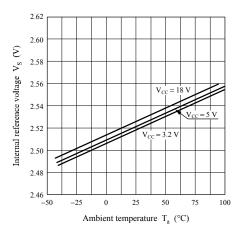







 $V_{OL} - I_{OL}$


• Main Characteristics (continued)



■ Usage Notes

Pay attention to the followings in order to prevent the destruction during the use and to increase the reliability.

- In the application circuit example, the calculated value by the theoretical equation for timer interval calculation and such matter
 of the above into consideration.
 Also, the proportional constant "α" depends on the kinds and characteristics of the time interval and time interval capacitor.
 Make a final confirmation with the finished products.
 In the case when a high precision is required, adjust the value by using a variable resistor as the time interval resistor.
- 2. Use a time interval resistor in the range of $1k\Omega$ to $1M\Omega$, and a time interval capacitor in the range of $0.1 \,\mu\text{F}$ to $100 \,\mu\text{F}$ which is polyester or tantalum electronic capacitor with a small tand value. ($1/2f_{OSC}$ can be checked by MON pin)
- 3. Connect a capacitor (1 µF to 10 µF) to the V_s pin in order to protect the IC from an external noise and to stabilize its operation.
- 4. If turning on power again after an extremely short-time supply off state during the normal operation, be careful that there may be a case that the automatic reset (power-on reset) fails due to residual potential of the external capacitance.
- 5. Take measures against noise in order to prevent malfunction caused by external noise. Particularly, when setting a long interval, pay attention to the external noises.
- 6. When a plunger or relay is connected to the output circuit, connect diodes to both ends of the coil in order to protect the IC against counter electromotive power generated after power-off.
- 7. Do not short circuit the V_S pin with V_{CC} pin in order to avoid malfunction.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.