
Vishay Siliconix

40HS

COMPLIANT

Power MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	100					
R _{DS(on)} (Ω)	V _{GS} = 10 V 0.27					
Q _g (Max.) (nC)	16					
Q _{gs} (nC)	4.4					
Q _{gd} (nC)	7.7					
Configuration	Single					

N-Channel MOSFET

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- Surface Mount (IRFR120/SiHFR120)
- Straight Lead (IRFU120/SiHFU120)
- Available in Tape and Reel
- Fast Switching
- · Ease of Paralleling
- Lead (Pb)-free Available

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The DPAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU/SiHFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 W are possible in typical surface mount applications.

ORDERING INFORMATION								
Package	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	IPAK (TO-251)			
Lood (Bb) free	IRFR120PbF	IRFR120TRPbF ^a	IRFR120TRRPbF ^a	IRFR120TRLPbF ^a	IRFU120PbF			
Lead (Pb)-free	SiHFR120-E3	SiHFR120T-E3 ^a	SiHFR120TR-E3 ^a	SiHFR120TL-E3 ^a	SiHFU120-E3			
SnPb	IRFR120	IRFR120TR ^a	IRFR120TRR ^a	IRFR120TRL ^a	IRFU120			
SHED	SiHFR120	SiHFR120T ^a	SiHFR120TR ^a	SiHFR120TL ^a	SiHFU120			

Note

a. See device orientation.

PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	100	v
Gate-Source Voltage			V _{GS}	± 20	v
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C T _C = 100 °C		7.7	
Continuous Drain Current	VGS at 10 V	$T_C = 100 \ ^\circ C$	I _D	4.9	А
Pulsed Drain Current ^a			I _{DM}	31	
Linear Derating Factor				0.33	
Linear Derating Factor (PCB Mount) ^e				0.020	VV/*C
Single Pulse Avalanche Energy ^b			E _{AS}	210	mJ
Repetitive Avalanche Current ^a			I _{AR}	7.7	А
Repetitive Avalanche Energy ^a			E _{AR}	4.2	mJ
Maximum Power Dissipation	T _C =	25 °C	D	42	14/
Maximum Power Dissipation (PCB Mount) ^e	T _A = 25 °C		P _D	2.5	- W
Peak Diode Recovery dV/dt ^c			dV/dt	5.5	V/ns

Document Number: 91266 S-Pending-Rev. A, 21-Jul-08

WORK-IN-PROGRESS

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS $T_C = 25 \text{ °C}$, unless otherwise noted						
PARAMETER	SYMBOL	LIMIT	UNIT			
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C			
Soldering Recommendations (Peak Temperature)	for 10 s		260 ^d	C		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 25$ V, starting $T_J = 25$ °C, L = 5.3 mH, $R_G = 25 \Omega$, $I_{AS} = 7.7$ A (see fig. 12). c. $I_{SD} \leq 9.2$ A, dl/dt ≤ 110 A/µs, $V_{DD} \leq V_{DS}$, $T_J \leq 150$ °C.

d. 1.6 mm from case.

e. When mounted on 1" square PCB (FR-4 or G-10 material).

THERMAL RESISTANCE RATINGS							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Maximum Junction-to-Ambient	R _{thJA}	-	-	110			
Maximum Junction-to-Ambient (PCB Mount) ^a	R _{thJA}	-	-	50	°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	-	3.0			

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static				•		•	
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μA	100	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = 1 mA	-	0.13	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}	,	V _{GS} = ± 20 V	-	-	± 100	nA
		V _{DS} =	= 100 V, V _{GS} = 0 V	-	-	25	μA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80 V	, V _{GS} = 0 V, T _J = 125 °C	-	-	250	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V I _D = 4.6 A ^b		-	-	0.27	Ω
Forward Transconductance	g fs	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 4.6 \text{ A}$		1.6	-	-	S
Dynamic				•	•	•	
Input Capacitance	C _{iss}	$V_{GS} = 0 V,$ $V_{DS} = 25 V,$ f = 1.0 MHz, see fig. 5		-	360	-	pF
Output Capacitance	C _{oss}			-	150	-	
Reverse Transfer Capacitance	C _{rss}			-	34	-	
Total Gate Charge	Qg			-	-	16	nC
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	I _D = 9.2 A, V _{DS} = 80 V, see fig. 6 and 13 ^b	-	-	4.4	
Gate-Drain Charge	Q _{gd}			-	-	7.7	
Turn-On Delay Time	t _{d(on)}				6.8	-	
Rise Time	tr	- V=	= 50 V, I _D = 9.2 A,	-	27	-	1
Turn-Off Delay Time	t _{d(off)}	$R_G = 18 \Omega, R_D = 5.2 \Omega, \text{ see fig. } 10^{b}$		-	18	-	ns
Fall Time	t _f		-	17	-		
Internal Drain Inductance	LD	Between lead, 6 mm (0.25") from		-	4.5	-	
Internal Source Inductance	L _S	package and die contact	center of	-	7.5	-	nH

Vishay Siliconix

SPECIFICATIONS T _J = 25 °C, unless otherwise noted									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Drain-Source Body Diode Characteristics									
Continuous Source-Drain Diode Current	١ _S	MOSFET symbol showing the	-	-	7.7	А			
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode	-	-	31				
Body Diode Voltage	V _{SD}	T_J = 25 °C, I_S = 7.7 A, V_{GS} = 0 $V^{\rm b}$	-	-	2.5	V			
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 9.2 A, dl/dt = 100 A/µs ^b	-	130	260	ns			
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm J} = 25$ C, $I_{\rm F} = 9.2$ A, $dI/dl = 100$ A/ μ S	-	0.65	1.3	μC			
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and $L_{D})$							

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

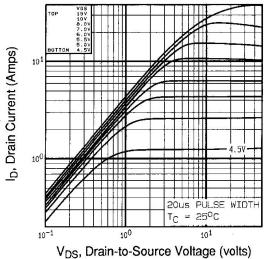
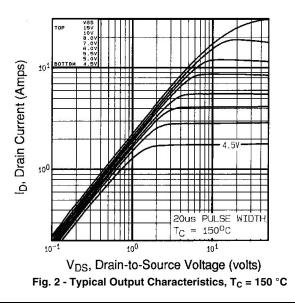



Fig. 1 - Typical Output Characteristics, $T_c = 25$ °C

Document Number: 91266 S-Pending-Rev. A, 21-Jul-08

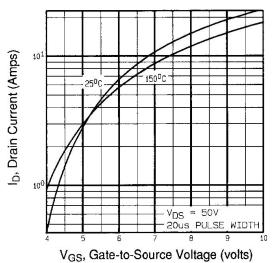
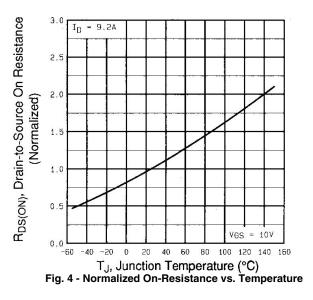
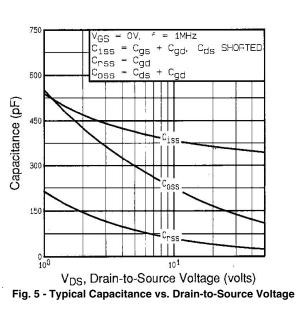




Fig. 3 - Typical Transfer Characteristics

Vishay Siliconix

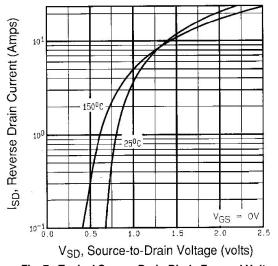


Fig. 7 - Typical Source-Drain Diode Forward Voltage

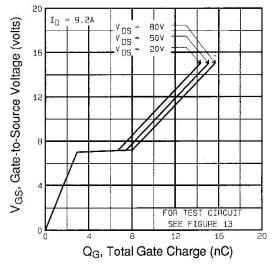
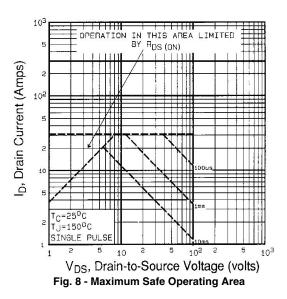



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Vishay Siliconix

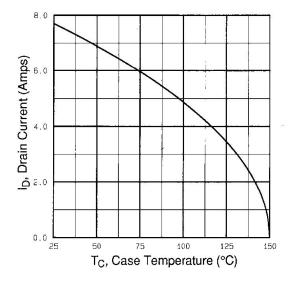


Fig. 9 - Maximum Drain Current vs. Case Temperature

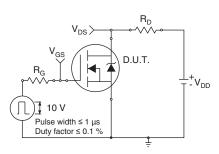


Fig. 10a - Switching Time Test Circuit

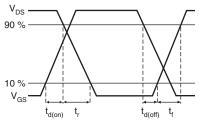


Fig. 10b - Switching Time Waveforms

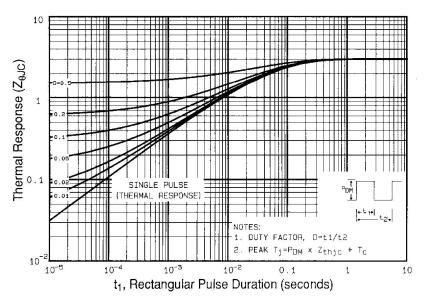


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

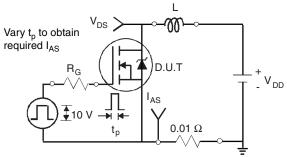


Fig. 12a - Unclamped Inductive Test Circuit

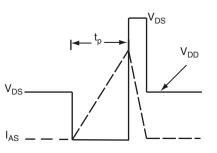


Fig. 12b - Unclamped Inductive Waveforms

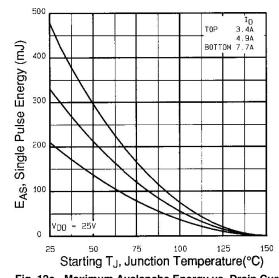
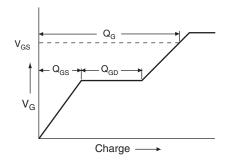



Fig. 12c - Maximum Avalanche Energy vs. Drain Current

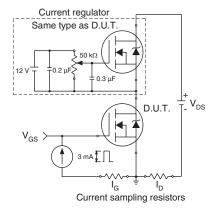
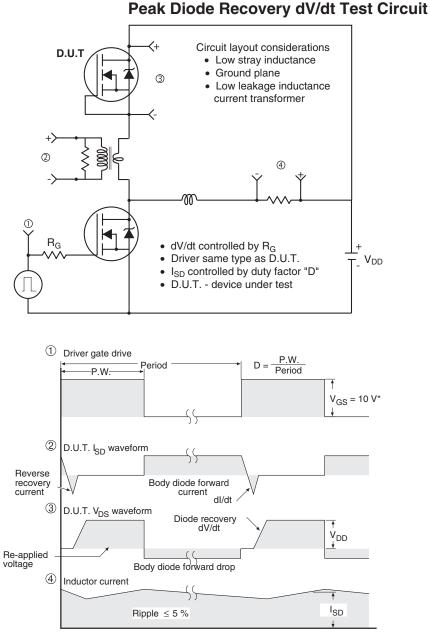



Fig. 13b - Gate Charge Test Circuit

Vishay Siliconix

* $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91266.

Document Number: 91266 S-Pending-Rev. A, 21-Jul-08

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.