M/A-COM

# Switched Low Noise Amplifier 800 - 1000 MHz



#### Features

- High Gain State:
  - Gain: 16dB, Noise Figure: 1.6dB
  - Input IP3: +3dBm (@2.7V, 25mA)
- Low Gain State:
  Insertion Loss: 5dB, Input IP3: +24dBm
- Single Supply: +2.7 to +5 VDC
- Low Cost MSOP-8 Plastic Package
- Adjustable current: 10 to 30 mA with external resistor

# Description

M/A-COM's AM55-0016 is a high dynamic range, switchable low noise amplifier in a low cost, MSOP 8-lead, surface mount, plastic package. The design utilizes a patented switching technique to provide a low insertion loss, high input IP<sub>3</sub> bypass state in parallel with the high gain, low noise state. The LNA employs external input matching to obtain optimum noise figure performance and operating frequency flexibility. The AM55-0016 also features flexible biasing to control the current consumption vs. dynamic range trade-off. Its current can be controlled over a range of 10 mA to 30 mA with an external resistor.

Typical applications include receiver front ends in cellular band CDMA handsets. It is also useful as a switched gain block, buffer or driver in portable cellular systems.

The AM55-0016 is fabricated using a low-cost 0.5-micron gate length GaAs MESFET process. The process features full passivation for increased performance and reliability.

# MSOP-8



## **Ordering Information**

| Part Number  | Package                     |
|--------------|-----------------------------|
| AM55-0016    | MSOP 8-Lead Plastic Package |
| AM55-0016TR  | Forward Tape and Reel*      |
| AM55-0016RTR | Reverse Tape and Reel*      |
| AM55-0016SMB | Designer's Kit              |

\* If specific reel size is required, consult factory for part number.

# Electrical Specifications<sup>1</sup> $T_A = +25^{\circ}C$ , $Z_0=50\Omega$ , F=881 MHz, $P_{IN}= -30$ dBm, $V_{DD}=2.7$ V, $I_{DD}=10$ mA

|                                          | 0 0, _ 0 001_, . 001                            | , - IN | •==, • DD = | :,:DD :• |      |
|------------------------------------------|-------------------------------------------------|--------|-------------|----------|------|
| Parameter                                | Test Conditions                                 | Units  | Min.        | Тур.     | Max. |
| HIGH GAIN STATE, Voltage control = 2.7 v | volts                                           |        |             |          |      |
| Gain                                     |                                                 | dB     | —           | 16       | —    |
| Noise Figure                             |                                                 | dB     | —           | 1.6      | 1.8  |
| Input IP3                                | $I_{DD} = 10 \text{ mA}, V_{DD} = 2.7 \text{V}$ | dBm    | —           | -2       | —    |
|                                          | $I_{DD} = 25 \text{ mA}, V_{DD} = 2.7 \text{V}$ | dBm    | —           | +3       | —    |
| Input VSWR / Output VSWR                 |                                                 | —      | —           | 2.0:1    |      |
| Reverse Isolation                        |                                                 | dB     | —           | 32       | —    |
| LOW GAIN STATE, Voltage control = 0 vol  | ts                                              |        |             |          |      |
| Insertion Loss                           | I <sub>DD</sub> = 100 μA                        | dB     | —           | 5        | —    |
| Input IP3                                |                                                 | dBm    | —           | +24      | —    |
| Input VSWR                               |                                                 | —      | —           | 2.3:1    | —    |
| Output VSWR                              |                                                 | —      | —           | 2.0:1    | —    |

1. Refer to *Typical Performance Data* for performance versus frequency and bias.

AMP and Connecting at a Higher Level are trademarks. Specifications subject to change without notice.



www.macom.com



V2.00

#### Absolute Maximum Ratings<sup>1</sup>

| Parameter                        | Absolute Maximum |  |
|----------------------------------|------------------|--|
| V <sub>DD</sub>                  | +6 VDC           |  |
| Input Power                      | 0 dBm            |  |
| Current                          | 30 mA            |  |
| Channel Temperature <sup>2</sup> | +150°C           |  |
| Operating Temperature            | -40°C to +85°C   |  |
| Storage Temperature              | -65°C to +150°C  |  |

1. Exceeding any one or combination of these limits may cause permanent damage.

2. Typical thermal resistance ( $\theta_{ic}$ ) = +99°C/W.

# **External Circuitry Parts List<sup>1</sup>**

| Part       | Value      | Purpose                 |
|------------|------------|-------------------------|
| C1, C2     | 1000 pF    | Source Bypass           |
| C3, C4     | 47 pF      | By-Pass                 |
| C5, C6, C7 | 10 nF      | By-Pass                 |
| L1         | 22 nH      | Tuning                  |
| RBIAS      | see note 2 | Source Bias Resistor    |
| U1         | UMH9N      | Dual Bipolar Transistor |

 All external circuitry parts are readily available, low cost surface mount components (0.040 inches x 0.020 inches or 0.060 inches x 0.030 inches).

2. RBIAS is chosen to set the desired current,

 $I_{dd}$  ~10 mA, R1 = 75 ohms;  $I_{dd}$  ~20 mA, R1 = 25 ohms;

 $I_{dd} \sim 20$  mA, R1 = 20 ohms.  $I_{dd} \sim 30$  mA, R1 = 9 ohms.

# **Recommended PCB Configuration**

#### Layout View

For:



## **External Circuitry**



## **Pin Configuration**

| Pin No. | Pin Name | Description            |
|---------|----------|------------------------|
| 1       | VDD1     | Stage 1 Supply Voltage |
| 2       | IN       | RF Input               |
| 3       | VS1      | Stage 1 Source         |
| 4       | GND      | RF and DC Ground       |
| 5       | VS2      | Stage 2 Source         |
| 6       | OUT      | RF Output              |
| 7       | VDD2     | Stage 2 Supply Voltage |
| 8       | VCTL     | Switch Control Voltage |

#### **Cross Section View**



The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50  $\Omega$  lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.2 mm) yielding a 50  $\Omega$  line width of 0.015" (0.38 mm). The recommended metalization thickness is 1 ounce copper.



M/A-COM Division of AMP Incorporated North America: Tel. (800) 366-2266, Fax (800) 618-8883 Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

www.macom.com

AMP and Connecting at a Higher Level are trademarks. Specifications subject to change without notice.

## **Typical Performance Data**

Test Conditions:  $T_A = +25^{\circ}C$ ,  $Z_0 = 50\Omega$ ,  $V_{DD} = 2.7V$ ,  $I_{DD} = 10mA$  unless otherwise specified.



M/A-COM Division of AMP Incorporated North America: Tel. (800) 366-2266, Fax (800) 618-8883 Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

www.macom.com

Specifications subject to change without notice

AMP and Connecting at a Higher Level are trademarks.

# **Typical Performance Data (continued)**





### Designer's Kit AM55-0016SMB

The AM55-0016SMB Designer's Kit allows for immediate evaluation of M/A-COM's AM55-0016. The Designer's Kit includes an AM55-0016, an evaluation board and a floppy disk containing typical performance data and a DXF file of the recommended PCB layout. The evaluation board consists of the recommended external surface mount circuitry, RF connectors and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM55-0016SMB evaluation PCB is illustrated below with all functional ports labeled.

#### **Evaluation PCB + RF Connector Losses**

| Port Reference | Approximate RF Loss |
|----------------|---------------------|
| RF IN          | 0.15 dB @ 900 MHz   |
| RF OUT         | 0.15 dB @ 900 MHz   |

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by one or more of the following methods:

- 1. A mating female multi-pin connector
- (Newark Electronics Stock # 46F-4658, not included).
- 2. Wires soldered to the necessary pins (not included).
- 3. Clip leads (not included).

## AM55-0016 Evaluation Board



V2.00

۱c

M/A-COM Division of AMP Incorporated North America: Tel. (800) 366-2266, Fax (800) 618-8883 Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

www.macom.com

AMP and Connecting at a Higher Level are trademarks. Specifications subject to change without notice.