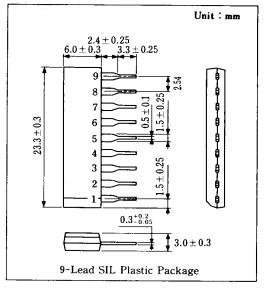
AN7381

トーンコントロール回路/Tone Control Circuit

■ 概 要

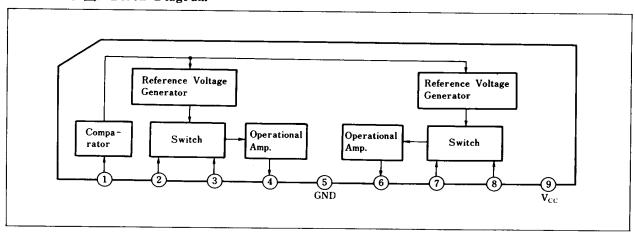
AN7381 は,カー用 ATC 専用 IC で AN7256, AN7258 とキット 使用することによりその特性が生かせます。


また、汎用的にはマニュアル動作でトーンコントロールが可能です。

■特 徴

- ●単連ポリュームで2ch 分の音質調整ができる
- ●自動トーンコントロール (ATC) が可能
- ●動作電源電圧範囲が広い: V_{CC}=5 V~12 V
- ●低雑音,低歪率
- ●チャンネルバランスが良い
- ●出力 OFF セット電圧が小さい

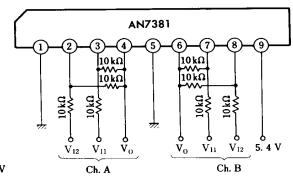
■ Features


- 2-channel tone controlled by single variable resistor control
- Control available by automatic tone control (ATC) input terminal
- ullet Wide supply voltage range: $V_{CC} = 5$ to 12V
- Low noise and low distortion
- Good channel balance
- Small output offset voltage

■ 端子名/Pin

Pin No.	端子名	Pin Name			
1	ATC	Auto. Tone Control			
2	入力 - 2Ch.A	Input - 2 Ch. A			
3	入力-1Ch.A	Input-1 Ch. A			
4	出力 Ch.A	Output Ch. A			
5	アース	GND			
6	出力 Ch.B	Output Ch.B			
7	入力 — 1 Ch. B	Input - 1 Ch. B			
8	入力 - 2 Ch. B	Input - 2 Ch. B			
9	電源電圧	V _{cc}			

■ ブロック図/Block Diagram

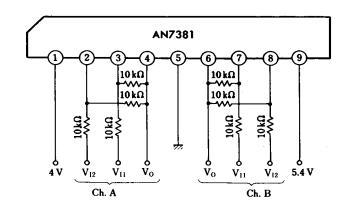

■ 絶対最大定格/Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Rating	Unit
電源電圧	v _{cc}	18	v
許容損失	P _D	300	mW
動作周囲温度	Topr	-30~+80	•c
保存温度	Tstg	-55~+150	,c

■ 電気的特性/Electrical Characteristics (V_{CC}=5.4V, Ta=25°C)

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
トーンコントロール量	V _{TC1}	1	注1)	0.88	1.00	1.13	v
トーンコントロール量	V _{TC2}	2	注2)	0.88	1.00	1.13	V
トーンコントロール量	V _{TC3}	1	注1)	0.12	0.00	0.12	v
トーンコントロール量	V _{TC4}	2	注2)	0.12	0.00	0.12	v
ATC コントロール量(1)	V _{ATC1}	3	注3)	0.88	1.00	1.13	v
ATC コントロール量(2)	V _{ATC2}	3	注3)	0.12	0.00	0.12	v
チャンネルバランス	CB	4	注4)	-1.94	0	1.58	dB
チャンネルセパレーション	Sep	4	注5)	-60	-65		dВ
全高調波歪率	THD	4	$V_1 = 150 \text{ mV}, 1 \text{ kHz}$ (400 Hz~20 kHz BPF)		0.03	0.1	%
最大入力電圧	V _{I(max)}	4	f=1 kHz, THD=1%	0.5			V
出力雑音電圧	Vno	4	V _I をアースする f=20 Hz~20 kHz		26	35	μV
全回路電流	Itot	4			6	10	mA
出力端子オフセット	V _{O(offset)}	3	注6)		10	15	mV
入力インピーダンス	Zi	1	4-2, 4-3, 6-7, 6-8	200			kΩ

Test Circuit 1 (V_{TC1}, V_{TC3}, Z_i)

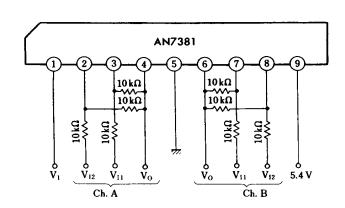


注1) V₁₂=2.5V にして V₁₁ を 3V から 2V にしたときの V₀ の変化量

Test Circuit 2 (V_{TC2}, V_{TC4})

注2)

V₁₁=2.5V にして V₁₂ を 3V から 2V にしたときの V₀ の変化量

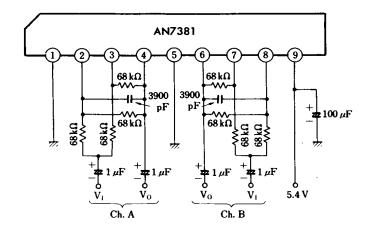

Test Circuit 3 (VATC1, VATC2, VO(offset))

注3)

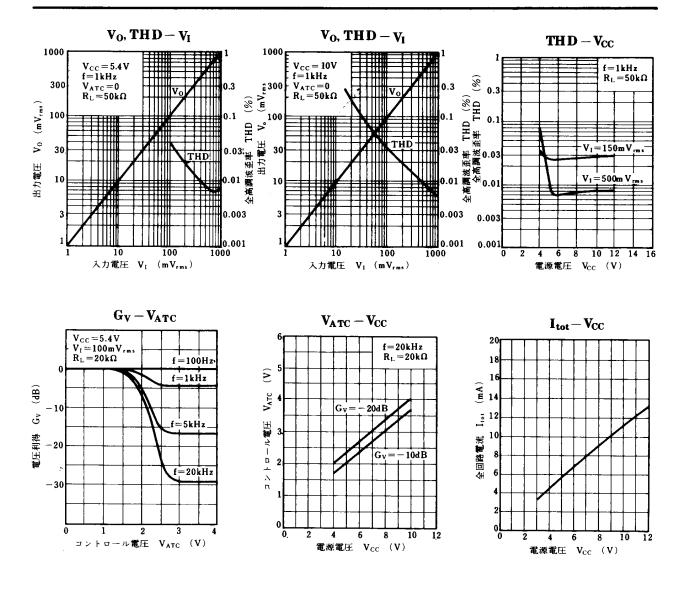
 V_1 =1.2V, V_{12} =2.5V にして V_{11} を 3Vから2Vにしたときの V_0 の変化量

注6)

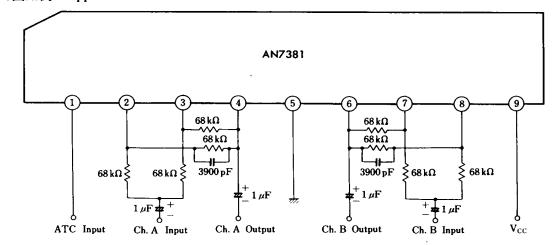
 V_1 =1:2V から V_1 =3.2V に変えたときの V_0 の変動 (V_{I1} , V_{I2} は開放)


Test Circuit 4 (CB, Sep, THD, $V_{I(max)}$, V_{no} , I_{tot})

注4)


V_I =150 mV, 1 kHz のときの ch.A, ch.B 間の偏差 (ch.A を基準とする)

注5


一方の入力端へ150mV 1kHz を加え 他方の出力端のもれ

■ 応用回路例/Application Circuit

