| SAN | FC151 |
| ---: | ---: | ---: |
| | PNP Epitaxial Planar Silicon Composite Transistor
 High-Frequency Amp, Current Mirror
 Circuit Applications |

Features

Composite type with 2 transistors contained in the CP package currently in use, improving the mounting efficiency greatly.
The FC151 is formed with two chips, being equivalent to the 2SA1669, placed in one package.
Excellent in thermal equilibrium and pair capability.

Electrical Connection

Package Dimensions

unit:mm
2103A

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$		-20	V
Collector-to-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$		-15	V
Emitter-to-Base Voltage	$\mathrm{V}_{\text {EBO }}$		-3	V
Collector Current	I_{C}		-50	mA
Collector Dissipation	P_{C}	1 unit	200	mW
Total Dissipation	P_{T}		300	mW
Junction Temperature	Tj		150	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics at Ta $=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditons	Ratings			Unit	
			min	typ	max		
Collector Cutoff Current	${ }^{\text {CBO }}$	$\mathrm{V}_{\mathrm{CB}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			-0.1	$\mu \mathrm{A}$	
Emitter Cutoff Current	IEBO	$\mathrm{V}_{E B}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			-0.1	$\mu \mathrm{A}$	
DC Current Gain	$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	20		100		
DC Current Gain Ratio	$\begin{gathered} \mathrm{h}_{\mathrm{FE}}(\mathrm{smalll} / \\ \text { large }) \end{gathered}$	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	0.7	0.93			
B-E Voltage Difference	V_{BE} (largesmall)	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$		3.0	15	mV	
Gain-Bandwidth Product	${ }^{\text {¢ }}$	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	1.5	3.0		GHz	
Output Capacitance	Cob	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		1.0	1.5	pF	
Forward Transfer Gain	\| S21e		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{f}=0.9 \mathrm{GHz}$	5			dB
Noise Figure	NF	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~mA}, \mathrm{f}=0.9 \mathrm{GHz}$		2.0		dB	

Note:The specifications shown above are for each individual transistor. However, the specifications of h_{FE} (small/large) and h_{FE} (large-small) are for pair capability
Marking:151

NF Test Circuit

S Parameter

S11e: $\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}$
$\mathrm{f}=100 \mathrm{MHz}, 200$ to $1200 \mathrm{MHz}(200 \mathrm{MHz}$ step)

(

S12e: $\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}$
$\mathrm{f}=100 \mathrm{MHz}, 200$ to 1200 MHz (200 MHz step)

FC151

S21e: $\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}$
$\mathrm{f}=100 \mathrm{MHz}, 200$ to 1200 MHz (200 MHz step)

S22e: $\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}$
$\mathrm{f}=100 \mathrm{MHz}, 200$ to 1200 MHz (200 MHz step)

S Parameter (Common-emitter)
$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$

Freq (MHz)	$\left\|\mathrm{S}_{11}\right\|$	$\angle \mathrm{S}_{11}$	$\left\|\mathrm{~S}_{21}\right\|$	$\angle \mathrm{S}_{21}$	$\left\|\mathrm{~S}_{12}\right\|$	$\angle \mathrm{S}_{12}$	$\left\|\mathrm{~S}_{22}\right\|$	$\angle \mathrm{S}_{22}$
100	0.707	-33.1	8.215	151.1	0.043	68.6	0.856	-19.8
200	0.589	-60.3	6.763	132.2	0.059	62.0	0.761	-25.4
400	0.435	-104.7	4.810	106.5	0.089	56.4	0.584	-34.2
600	0.373	-128.1	3.503	93.2	0.110	57.3	0.508	-36.6
800	0.349	-144.4	2.728	83.4	0.130	59.5	0.474	-39.0
900	0.346	-150.1	2.492	80.0	0.142	60.9	0.464	-40.3
1000	0.344	-155.4	2.266	76.8	0.154	61.4	0.459	-41.7
1200	0.340	-163.6	1.971	70.6	0.176	62.1	0.452	-45.2

$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-20 \mathrm{~mA}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$

Freq (MHz)	$\left\|\mathrm{S}_{11}\right\|$	$\angle \mathrm{S}_{11}$	$\left\|\mathrm{~S}_{21}\right\|$	$\angle \mathrm{S}_{21}$	$\left\|\mathrm{~S}_{12}\right\|$	$\angle \mathrm{S}_{12}$	$\left\|\mathrm{~S}_{22}\right\|$	$\angle \mathrm{S}_{22}$
100	0.348	-92.8	12.039	129.4	0.031	67.3	0.727	-22.9
200	0.330	-116.7	9.073	118.2	0.041	66.0	0.634	-24.8
400	0.350	-151.2	4.962	95.1	0.068	67.7	0.510	-26.5
600	0.353	-164.5	3.408	84.4	0.093	69.9	0.481	-28.1
800	0.360	-172.9	2.591	76.4	0.118	71.6	0.470	-31.1
900	0.366	-176.2	2.346	73.3	0.131	72.0	0.467	-32.9
1000	0.371	-178.4	2.142	70.8	0.146	71.8	0.467	-34.8
1200	0.379	176.2	1.851	65.2	0.171	71.1	0.466	-39.1

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibilty for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1998. Specifications and information herein are subject to change without notice.

