

# Agilent HCMS-235x CMOS Extended Temperature Range 5 x 7 Alphanumeric Display

**Data Sheet** 

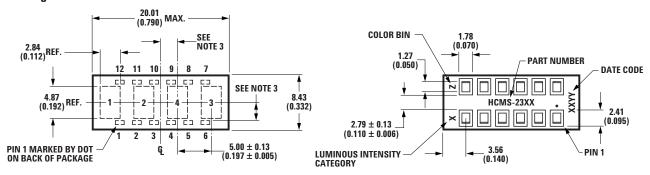


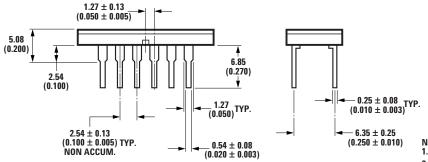
# Description

This sunlight viewable 5 x 7 LED four-character display is contained in 12 pin dual-in-line packages designed for displaying alphanumeric information. The display is designed with on-board CMOS integrated circuits. Two CMOS

ICs form an on-board 28-bit serial-in/parallel-out shift register with constant current output LED row drivers. Decoded column data is clocked into the on-board shift register for each refresh cycle. Full character display is achieved with external column strobing.

#### **Features**


- On-Board low power CMOS IC Integrated shift register with constant current LED drivers
- Wide operating temperature range -55°C to +100°C
- Compact glass ceramic 4 character package
   Series X-Y stackable
- · Sunlight viewable
- 5 x 7 LED matrix displays full ASCII set
- Character height of 5.0 mm (0.20 inch)
- Wide viewing angle
   X Axis = ±50°
   Y Axis = ±65°
- Usable in night vision lighting applications


#### **Typical Applications**

- Avionics
- Communication systems
- · Fire control systems
- Radar systems



### **Package Dimensions**





| PIN | FUNCTION      | PIN | FUNCTION        |
|-----|---------------|-----|-----------------|
| 1   | COLUMN 1      | 7   | DATA OUT        |
| 2   | COLUMN 2      | 8   | VB              |
| 3   | COLUMN 3      | 9   | V <sub>DD</sub> |
| 4   | COLUMN 4      | 10  | CLOCK           |
| 5   | COLUMN 5      | 11  | GROUND          |
| 6   | INT. CONNECT* | 12  | DATA IN         |

\* DO NOT CONNECT OR USE

- NOTES:
  1. DIMENSIONS IN MILLIMETERS (INCHES).
- 2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS  $\pm~0.38~\text{mm}~(\pm~0.015)$  .
- CHARACTERS ARE CENTERED WITH RESPECT TO LEADS WITHIN  $\pm$  0.13 mm ( $\pm$  0.005).
- LEAD MATERIAL IS COPPER ALLOY, SOLDER DIPPED.

#### **Absolute Maximum Ratings**

| Parameter                                                                         | Value                          |  |  |
|-----------------------------------------------------------------------------------|--------------------------------|--|--|
| Supply Voltage V <sub>DD</sub> to Ground                                          | −0.3 V to 7.0 V <sup>[1]</sup> |  |  |
| Data Input, Data Output, V <sub>B</sub>                                           | –0.3 V to V <sub>DD</sub>      |  |  |
| Column Input Voltage, V <sub>COL</sub>                                            | −0.3 V to V <sub>DD</sub>      |  |  |
| Free Air Operating Temperature Range, T <sub>A</sub>                              | –55°C to +100°C                |  |  |
| Storage Temperature Range, T <sub>s</sub>                                         | –55°C to +100°C                |  |  |
| Maximum Allowable Package Power Dissipation, $P_D^{[2,3]}$ at $T_A = 71^{\circ}C$ | 1.31 Watts                     |  |  |
| Through-the-Wave Solder Temperature 1.59 mm (0.063") Below Body                   | 250°C for 3 secs. max.         |  |  |
| ESD Protection @ 1.5 k $\Omega$ , 100 pF                                          | $V_Z = 4 \text{ kV}$           |  |  |

#### Notes:

- 1. Maximum duration 2 seconds.
- 2. Maximum allowable power dissipation is derived from  $V_{DD} = 5.25 \text{ V}$ ,  $V_{B} = 2.4 \text{ V}$ ,  $V_{COL} = 3.5 \text{ V}$ , 20 LEDs ON per character, 20% DF.
- 3. HCMS-2353 derate above 71°C at 23 mW/°C,  $R\theta_{J-A} = 45$ °C/W. Derating based on R $\theta$ PC-A = 35°C/W per display for printed circuit board assembly.

## **Recommended Operating Conditions** Over Operating Range (-55°C to + 100°C)

| Parameter                    | Symbol                 | Min. | Typ. | Max  | Units |
|------------------------------|------------------------|------|------|------|-------|
| Supply Voltage               | $V_{DD}$               | 4.75 | 5.00 | 5.25 | V     |
| Data Out Current, Low State  | I <sub>OL</sub>        |      |      | 1.6  | mA    |
| Data Out Current, High State | I <sub>OH</sub>        |      |      | -0.5 | mA    |
| Column Input Voltage         | V <sub>COL</sub>       | 2.75 | 3.0  | 3.5  | V     |
| Setup Time                   | t <sub>SETUP</sub>     | 10   |      |      | ns    |
| Hold Time                    | t <sub>HOLD</sub>      | 25   |      |      | ns    |
| Clock Pulse Width High       | t <sub>WH(CLOCK)</sub> | 50   |      |      | ns    |
| Clock Pulse Width Low        | t <sub>WL(CLOCK)</sub> | 50   |      |      | ns    |
| Clock High to Low Transition | t <sub>THL</sub>       |      |      | 200  | ns    |
| Clock Frequency              | f <sub>CLOCK</sub>     |      |      | 5    | MHz   |
|                              |                        |      |      |      |       |

# **Electrical Characteristics** Over Operating Range (-55°C to + 100°C)

| Parameter                                     | Symbol                    | Test Conditions                                | Min | Typ.* | Max                | Units  |
|-----------------------------------------------|---------------------------|------------------------------------------------|-----|-------|--------------------|--------|
| Supply Current, Dynamic <sup>[1]</sup>        | I <sub>DDD</sub>          | f <sub>CLOCK</sub> = 5 MHz                     |     | 6.2   | 7.8                | mA     |
| Supply Current, Static <sup>[2]</sup>         | I <sub>DDDSoff</sub>      | $V_B = 0.4 \text{ V}$ , Data and Clock = 0.4 V |     | 1.8   | 26                 | mA     |
|                                               | $I_{DDDSon}$              | $V_B = 2.4 \text{ V}$ , Data and Clock = 0.4 V |     | 2.2   | 6.0                |        |
| Column Input Current                          | I <sub>COL</sub>          | $V_B = 0.4 \text{ V}$                          |     |       | 10                 | μА     |
|                                               |                           | $V_B = 2.4 \text{ V}$                          |     | 500   | 650                | mA     |
| Input Logic High Data, V <sub>B</sub> , Clock | V <sub>IH</sub>           | $V_{DD} = 4.75 \text{ V}$                      | 2.0 |       |                    | V      |
| Input Logic Low Data, V <sub>B</sub> , Clock  | V <sub>IL</sub>           | $V_{DD} = 5.25 \text{ V}$                      |     |       | 8.0                | V      |
| Input Current                                 | l <sub>l</sub>            | V <sub>DD</sub> = 5.25 V                       |     |       |                    |        |
| Data                                          |                           | $V_{I}^{[3]} = 2.4 \text{ V (Logic High) or}$  | -46 | -60   | -103               | μΑ     |
| Clock, V <sub>B</sub>                         |                           | $V_1^{[3]} = 0.4 \text{ V (Logic Low)}$        | -92 | -120  | -206               |        |
| Data Out Voltage                              | V <sub>OH</sub>           | V <sub>DD</sub> = 4.75 V                       | 2.4 | 4.2   |                    | V      |
| -                                             |                           | $I_{OH} = -0.5 \text{ mA}$                     |     |       |                    |        |
|                                               |                           | $I_{COL} = 0 \text{ mA}$                       |     |       |                    |        |
|                                               | $\overline{V_{0L}}$       | V <sub>DD</sub> = 5.25 V                       |     | 0.2   | 0.4                | V      |
|                                               |                           | $I_{OL} = 1.6 \text{ mA}$                      |     |       |                    |        |
|                                               |                           | $I_{COL} = 0 \text{ mA}$                       |     |       |                    |        |
| Power Dissipation Per Package <sup>[4]</sup>  | P <sub>D</sub>            | $V_{DD} = 5.0 \text{ V}$                       |     | 668   |                    | mW     |
|                                               |                           | $V_{COL} = 5.0 \text{ V}$                      |     |       |                    |        |
|                                               |                           | 17.5% DF                                       |     |       |                    |        |
|                                               |                           | $V_B = 2.4 \text{ V}$                          |     |       |                    |        |
|                                               |                           | 15 LEDs ON per Character                       |     |       |                    |        |
| Thermal Resistance<br>IC Junction-to-Pin [5]  | $R\theta_{	extsf{J-PIN}}$ |                                                |     | 10    |                    | °C/W   |
| Leak Rate                                     |                           |                                                |     |       | 5x10 <sup>-8</sup> | cc/sec |
|                                               |                           |                                                |     |       |                    |        |

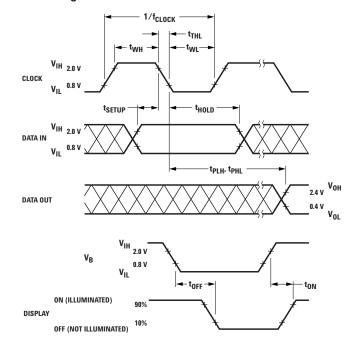
<sup>\*</sup>All typical values specified at  $V_{DD}$  = 5.0 V and  $T_A$  = 25°C.

- 1. IDD Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5 MHz, the display is not illuminated.
- 2. IDD Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
- 3. V<sub>I</sub> represents the input voltage to an input pin.
  4. Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
- 5. IC junction temperature  $T_J$  (IC) =  $(P_D)(R\theta_{J-PIN} + R\theta_{PC-A}) + T_A$ .

# Optical Characteristics at $T_A = 25^{\circ}C$ High Performance Green HCMS-2353

| Description                                                        | Symbol             | Test Condition                                                                                         | Min. | Typ.* | Max. | Units |
|--------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|------|-------|------|-------|
| Peak Luminous Intensity per LED <sup>[6]</sup> (Character Average) | I <sub>vPEAK</sub> | $V_{DD} = 5.0 \text{ V}$ $V_{COL} = 5.0 \text{ V}$ $V_{B} = 2.4 \text{ V}$ $T_{i} = 25^{\circ}C^{[7]}$ | 2400 | 3000  |      | μcd   |
| Dominant Wavelength <sup>[8,9]</sup>                               | $\lambda_{\sf d}$  |                                                                                                        |      | 574   |      | nm    |
| Peak Wavelength                                                    | $\lambda_{PEAK}$   |                                                                                                        |      | 568   |      | nm    |

### Yellow HCMS-2351


| Description                                             | Symbol             | Test Condition                                                              | Min  | Typ.* | Max. | Units |
|---------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|------|-------|------|-------|
| Peak Luminous Intensity per LED [6] (Character Average) | I <sub>vpeak</sub> | $V_{DD} = 5.0 V$ $V_{COL} = 5.0 V$ $V_{B} = 2.4 V$ $Ti = 25^{\circ}C^{[7]}$ | 1600 | 2400  |      | μcd   |
| Dominant Wavelength [8,9]                               | $\lambda_{d}$      |                                                                             |      | 585   |      | nm    |
| Peak Wavelength                                         | $\lambda_{PEAK}$   |                                                                             |      | 583   |      | nm    |

<sup>\*</sup>All typical values specified at  $V_{DD} = 5.0 \text{ V}$  and  $T_A = 25^{\circ}\text{C}$  unless otherwise noted.

#### Notes:

- 6. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the package.
- 7. T<sub>i</sub> refers to the initial case temperature of the display immediately prior to the light measurement.
- 8. Dominant wavelength,  $\lambda_d$ , is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the color of the device.
- 9. Categorized for color with the color category designated by a number on the back of the package.

### **Switching Characteristics**



| Parameter                                                                     | Condition                                         | Typ. | Max. | Units |
|-------------------------------------------------------------------------------|---------------------------------------------------|------|------|-------|
| f <sub>clock</sub> CLOCK Rate                                                 |                                                   |      | 5    | MHz   |
| t <sub>PLH</sub> , t <sub>PHL</sub><br>Propagation Delay<br>CLOCK to DATA OUT | $C_L = 15 \text{ pF}$ $R_L = 2.4 \text{ k}\Omega$ |      | 105  | ns    |
| $t_{OFF}$ $V_{B}$ (0.4 V) to Display OFF                                      |                                                   | 4    | 5    | μs    |
| $t_{\rm ON}$ V <sub>B</sub> (2.4 V) to Display ON                             |                                                   | 1    | 2    |       |

### **Electrical Description**

The display contains four 5 x 7 LED dot matrix characters and two CMOS integrated circuits, as shown in Figure 1. The two CMOS integrated circuits form an on-board 28 bit serial-in/ parallel-out shift register that will accept standard TTL logic levels. The Data Input, pin 12, is connected to bit position 1 and the Data Output, pin 7, is connected to bit position 28. The shift register outputs control constant current sinking LED row drivers. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOS IC alphanumeric displays allows for an effective interface to a display controller circuit that supplies decoded character information. The row data for a given column (one 7 bit byte per character) is loaded (bit serial) into the on-board 28 bit shift register with high to low transitions of the Clock input. To load decoded character information into the display, column data for character 4 is loaded first and the column data for character 1 is loaded last in the following manner. The 7 data bits for column 1, character 4, are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3, are loaded into the shift register,

shifting the character 4 data over one character position. This process is repeated for the other two characters until all 28 bits of column data (four 7 bit bytes of character column data) are loaded into the on-board shift register. Then the column 1 input, V<sub>COL</sub> pin 1, is energized to illuminate column 1 in all four characters. This process is repeated for columns 2, 3, 4 and 5. All V<sub>COL</sub> inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input V<sub>B</sub>, pin 8, is at logic low regardless of the outputs of the shift register or whether one of the V<sub>COL</sub> inputs is energized. Refer to Application Note 1016 for drive circuit information.



Figure 1. Display block diagram.

#### **ESD Susceptibility**

The display has an ESD susceptibility ratings of CLASS 3 of MIL-STD-883E, HBM. It is recommended that normal CMOS handling precautions be observed with these devices.

#### **Soldering and Post Solder Cleaning**

These displays may be soldered with a standard wave solder process using either an RMA flux and solvent cleaning or an OA flux and aqueous cleaning. For optimum soldering, the solder wave temperature should be 245 °C and the dwell time for any display lead passing through the wave should be 1.5 to 2 seconds. For more detailed information, refer to Application Note 1027, Soldering LED Components.

#### **Contrast Enhancement**

When used with the proper contrast enhancement filters, the display is readable in sunlight.

Refer to Application Note 1029, Luminous Contrast and Sunlight Readability of the HDSP-235X Series Alphanumeric Displays for Sunlight Viewable Applications, for information on contrast enhancement for sun-light and daylight ambient. Refer to Application Note 1015, Contrast Enhancement Techniques for LED Displays, for information on contrast enhancement in moderate ambients.

### **Night Vision Lighting**

When used with the proper NVG/DV filters, HCMS-235x display may be used in night vision lighting applications. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030, LED Displays and Indicators and Night Vision Imaging System Lighting.

# Controller Circuits, Power Calculations, and Display Dimming

Refer to Application Note 1016, *Using the HDSP-2000 Alphanumeric Display Family*, for information on controller circuits to drive these displays, how to do power calculations, and a technique for display dimming.

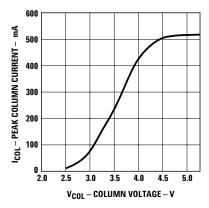



Figure 2. Peak column current vs. column voltage at  $T_A = 25^{\circ}C$ .

### www.agilent.com/ semiconductors

For product information and a complete list of distributors, please go to our web site.

Data subject to change. Copyright © 2004 Agilent Technologies, Inc. August 13, 2004 5989-1320EN

