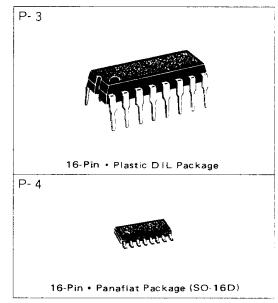

MN4040B/MN4040BS

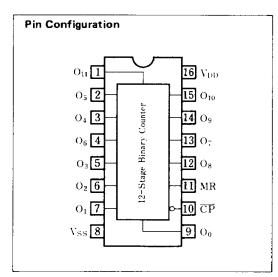
12-Stage Binary Counters

■ Description

The MN4040B/S are 12-stage binary ripple counters with a clock input. The reset input and outputs are fully buffered. The counter advances on the negative going edge of the clock input. A High on the MR input clears all counter stages and forces all outputs ($O_0 \sim O_{11}$) Low, independent of the clock input. These are suitable for frequency dividers and center-control circuits, and are equivalent to MOTOROLA MC14040B and RCA CD4040B.

■ Logic Diagram




Pin Explanation

 \overline{CP} : Clock input (\diagdown)

MR: Reset input

 $\mathrm{O}_0\!\sim\!\mathrm{O}_{11}$: Output (12 Bits)

■ Maximum Ratings (Ta=25°C)

Item		Symbol	Ratings	Unit
Supply Voltage		V_{DD}	-0.5~+18	V
Input Voltage		V ₁	$-0.5 \sim V_{DD} + 0.5^*$	V
Output Voltage		V_{O}	$-0.5 \sim V_{DD} + 0.5^*$	V
Peak Input · Output Current		$\pm I_1$	max. 10	mA
Power Dissipation Ta=-40~+60°C		D	max. 400	
(per package)	Ta=+60~+85°C	P_{D}	Decrease up to 200mW rating at 8mW/°C	mW
Power Dissipation (per output terminal)		P_{D}	max. 100	mW
Operating Ambient Temperature		Topr	-40~+85	°C
Storage Temperature		Tstg	-65~+150	°C

* V_{DD} + 0.5V should be under 18V

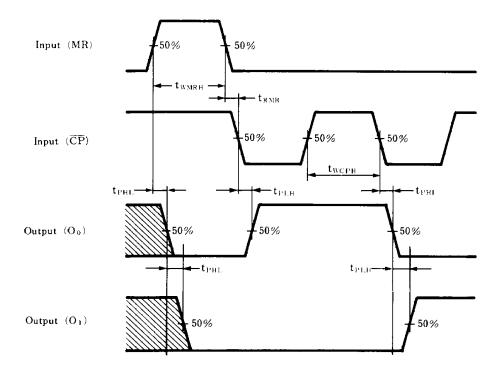
— 109 —

Panasonic

\blacksquare DC Characteristics $(V_{SS}\!=\!0V)$

	V _{DD} Sym-				Ta=-40°C		Ta=25℃		Ta=85℃		Unit
Item	V	bol	Conditions		min.	max.	min.	max.	min.	max.	<u> </u>
	5				-	20		20		150	
Quiescent Power	10	$I_{\rm DD}$	$V_{\rm I} = V_{\rm SS}$ or	V_{DD}	_	40	_	40	_	300	μ A
Supply Current	15					80	_	80	_	600	
	5					0.05		0.05	_	0.05	
Output Voltage	10	Vol.	$V_1 = V_{SS}$ or	\mathbf{V}_{DD}		0.05	-	0.05		0.05	V
Low Level	15		$ 1_{\rm O} < 1\mu A$		_	0.05		0.05		0.05	
	5				4.95	_	4.95	_	4.95		
Output Voltage	10	V _{OH}	$ V_1 = V_{SS} \text{ or }$ $ I_0 < 1 \mu A$	$V_{ m DD}$	9.95	_	9.95		9.95	_ '	V
High Level	15				14.95		14.95		14.95		
	5			$V_0 = 0.5 \text{V or } 4.5 \text{V}$		1.5		1.5		1.5	
Input Voltage	10	V _{11.}	$ I_{\rm O} < 1 \mu A$	Vo=1V or 9V	_	3	_	3	_	3	V
Low Level	15			$V_0 = 1.5 V \text{ or } 13.5 V$		4		4	_	4	
	5		I_{O} < 1μ A	$V_0 = 0.5 V \text{ or } 4.5 V$	3.5	_	3.5		3.5	_	
Input Voltage High Level	10	V_{IH}		$V_0 = 1V \text{ or } 9V$	7		7		7	-	V
Ulğii Levei	15			$V_0 = 1.5 \text{V or } 13.5 \text{V}$	11_		11		11		<u> </u>
Output Current Low Level	5		$V_0 = 0.4V$	$V_1 = 0$ or $5V$	0.52	_	0.44	_	0.36	_	1
	10	I_{OL}	$V_0 = 0.5 V$,	$V_1 = 0$ or $10V$	1.3		1.1		0.9	_	mA
	15		$V_0=1.5V$	$V_1=0$ or $15V$	3.6	_	3		2.4		ļ
Output Current High Level	5		$V_0 = 4.6 V$	$V_I = 0$ or $5V$	0.52	-	0.44	_	0.36	-	
	10	-1_{OH}	$ V_0=9.5V$	$V_i = 0 \text{ or } 10V$	1.3	-	1.1	-	0.9	-	mA
	15		$V_0 = 13.5V$	$V_{1} = 0 \text{ or } 15V_{1}$	3.6		3		2.4		
Output Current High Level	5	-I _{OH}	$V_0 = 2.5 V$	$V_1 = 0$ or $5V$	1.7		1.4	_	1.1	<u> </u>	mA
Input Leakage Current	15	$\pm I_{I}$	$V_1 = 0$ or 1	5V	_	0.3		0.3		1	μA

\blacksquare Switching Characteristics $(Ta\!=\!25\%$, $V_{SS}\!=\!0\,V$, $C_L\!=\!50pF)$


Item	$V_{\mathrm{DD}}\left(\mathbf{V} ight)$	Symbol	min.	typ.	max.	Unit
Output Rise Time	5	t _{TLH}	_	60	180	
	10			30	90	ns
	15		_	20	60	
	5	t _{THL}		60	180	
Output Fall Time	10		_	30	90	ns
Output 1 and 1 and	15		_	20	60	
Propagation Delay Time CP →O ₀ (L→H)	5	t _{PLH}		105	315	
	10		_	50	150	ns
	15		_	35	105	
Propagation Delay Time CP →O ₀ (H→L)	5			105	315	
	10	tPHL	_	45	135	ns
	15		_	30	90	
	5	$t_{\rm PLH}$		70	210	
Propagation Delay Time On→On-1 (L→H)	10			25	75	ns
	15			20	60	
Propagation Delay Time On→On . 1 (H→L)	5	t _{PH1}		80	240	
	10		-	30	90	ns
	15		_	20	60	

Panasonic - 110 -

Switching Characteristics	$Ta = 25^{\circ}C$	$V_{SS} = 0V$	$C_L = 50pF$
---------------------------	--------------------	---------------	--------------

Item	$V_{\mathrm{DD}}\left(\mathrm{V}\right)$	Symbol	min.	typ.	max.	Unit
Propagation Delay Time	5		-	180	540	
	10	tent	_	90	270	ns
$MR \rightarrow On (H \rightarrow L)$	15			70	210	
	5		—	25	75	
Minimum Clock Pulse Width	10	twcpH	-	15	45	ns
	15		_	10	30	
	5		_	65	195	
Minimum Reset Pulse Width	10	t _{WMRH}	_	50	150	ns
	15		_	45	135	
	5			60	180	
Reset Recovery Time	10	t _{RMR}	_	35	105	ns
	15			25	75	
Maximum Clock Frequency	5		5	10	_	
	10	fmax	13	25	_	MHz
	15		18	35	_	
Input Capacitance		Cı	_	_	7.5	pF

• Dynamic Signal Waveforms

Waveforms showing propagation delays for MR to 0_n and \overline{OP} to 0_0 , minimum MR and \overline{CP} pulse widths and recovery time for MR