Programmable logic sequencer

DESCRIPTION

The PLS159A is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "fold-back" inverting buffer and control gate F_{C}. It features 8 registered I / O outputs (F) in conjunction with 4 bidirectional I/O lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (C). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.
On-chip T/C buffers couple either True (I, B, Q) or Complement (I, B, \bar{Q}, \bar{C}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Any of the 32 AND gates can drive bidirectional I/O lines (B), whose output polarity is individually programmable through a set of Ex-OR gates for implementing AND-OR or AND-NOR logic functions. Similarly, any of the 32 AND gates can drive the J-K inputs of all flip-flops. There are 4 AND gates for the Asynchronous Preset/Reset functions.

All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).
The PLS159A is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

FEATURES

- High-speed version of PLS159
- $\mathrm{f}_{\mathrm{MAX}}=18 \mathrm{MHz}$
- 25 MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J-K, T, or D-type flip-flops
- Power-on reset feature on all flip-flops ($F_{n}=1$)
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge-triggered clock
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State outputs

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

PIN CONFIGURATIONS

$\mathrm{N}=$ Plastic Dual In-Line Package (300mil-wide)

A = Plastic Leaded Chip Carrier

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	DRAWING NUMBER
20-Pin Plastic Dual In-Line Package (300mil-wide)	PLS159AN	0408D
20-Pin Plastic Leaded Chip Carrier	PLS159AA	0400 E

Programmable logic sequencer

 $(16 \times 45 \times 12)$
LOGIC DIAGRAM

Programmable logic sequencer

$$
(16 \times 45 \times 12)
$$

FUNCTIONAL DIAGRAM

LOGIC FUNCTION

NOTE:
Similar logic functions are applicable for D and T mode flip-flops.

FLIP-FLOP TRUTH TABLE

NOTES:

1. Positive Logic:
$J-K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots \ldots \ldots . T_{31}$
$\mathrm{T}_{\mathrm{n}}=\bar{C} \cdot(10 \cdot 11 \cdot 12 \ldots) \cdot\left(\mathrm{Q}_{0} \cdot \mathrm{Q}_{1} \ldots\right)$.
(B0 - B1 - ...)
2. \uparrow denotes transition from Low to High level.
3. $\mathrm{X}=$ Don't care
4. ${ }^{*}=$ Forced at F_{n} pin for loading the J-K flip-flop in the Input mode. The load control term, L_{n} must be enabled (HIGH) and the p-terms that are connected to the associated flip-flop must be forced LOW (disabled) during Preload.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. ${ }^{* *}=$ Forced at F_{n} pin to load J-K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. $\overline{O E}$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J-K only or J-K or D (controlled).
5. All B pins are inputs and all F pins are outputs unless otherwise programmed.

CAUTION: PLS159A

PROGRAMMING ALGORITHM
The programming voltage required to program the PLS159A is higher (17.5V) than that required to program the PLS159 (14.5V). Consequently, the PLS159 programming algorithm will not program the PLS159A. Please exercise caution when accessing programmer device codes to insure that the correct algorithm is used.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	V_{DC}
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	V_{DC}
1 N	Input currents	-30	+30	mA
Iout	Output currents		+100	mA
$\mathrm{T}_{\text {amb }}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

Programmable logic sequencer

$$
(16 \times 45 \times 12)
$$

DC ELECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			MIN	TYP ${ }^{1}$	MAX	
Input voltage ${ }^{2}$						
V_{IH}	High	$V_{C C}=M A X$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$V_{C C}=\mathrm{MIN}$			0.8	V
$\mathrm{V}_{\text {IC }}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.35	0.5	V
Input current						
$\mathrm{IIH}^{\text {H }}$	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		<1	80	$\mu \mathrm{A}$
IIL	Low	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
Output current						
Io(OFF)	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{4,7}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		1	80	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-140	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$, 5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{6}$	$\mathrm{V}_{C C}=\mathrm{MAX}$		150	190	mA
Capacitance						
C_{IN}	Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$		8		pF
Cout	Output			15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with $\mathrm{V}_{I H}$ applied to $\overline{\mathrm{OE}}$.
5. Duration of short circuit should not exceed 1 second.
6. I ICC is measured with the $\overline{\mathrm{OE}}$ input grounded, all other inputs at 4.5 V and the outputs open.
7. Leakage values are a combination of input and output leakage.

Programmable logic sequencer

 $(16 \times 45 \times 12)$
AC ELECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	то	TEST CONDITION	LIMITS			UNIT
					MIN	TYP ${ }^{1}$	MAX	
Pulse width								
$\mathrm{t}_{\text {CKH }}$	Clock ${ }^{2}$ High	CK +	CK -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	15		ns
$\mathrm{t}_{\text {CKL }}$	Clock Low	CK -	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	15		ns
$\mathrm{t}_{\text {CKP }}$	Period	CK +	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	55	45		ns
tpRH	Preset/Reset pulse	(I,B) -	(I,B) +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
Setup time ${ }^{5}$								
$\mathrm{t}_{\text {S } 1}$	Input	(I,B) \pm	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
$\mathrm{t}_{\text {IS } 2}$	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
$\mathrm{t}_{1} 3$	Input (through Complement Array) ${ }^{4}$	$(\mathrm{I}, \mathrm{B}) \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	55	45		ns
Hold time								
$\mathrm{t}_{\mathrm{H} 1}$	Input	$(\mathrm{I}, \mathrm{B}) \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	0	-5		ns
$\mathrm{t}_{\mathrm{H} 2}$	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
Propagation delay								
$\mathrm{t}_{\mathrm{CKO}}$	Clock	CK +	$\mathrm{F} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		15	20	ns
toE1	Output enable ${ }^{3}$	$\overline{\mathrm{OE}}$ -	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
tod	Output disable ${ }^{3}$	$\overline{\mathrm{OE}}+$	F +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
$\mathrm{t}_{\text {PD }}$	Output	$(\mathrm{I}, \mathrm{B}) \pm$	$\mathrm{B} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		25	35	ns
toe2	Output enable ${ }^{3}$	(I,B) +	$\mathrm{B} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
tod2	Output disable ${ }^{3}$	(I,B) -	B +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
tpro	Preset/Reset	(I,B) +	F \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	45	ns
tppR	Power-on/preset	$\mathrm{V}_{\mathrm{CC}}+$	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		0	10	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 \mathrm{~ns}$.
3. For 3-State output; output enable times are tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $C_{L}=5 p F$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{T}}=\left(\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}\right)$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{T}}=\left(\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\right)$ level with S_{1} closed.
4. When using the Complement Array tcKP $=75 \mathrm{~ns}$ (min).
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUIT

NOTE:
C_{1} and C_{2} are to bypass V_{CC} to GND .

Programmable logic sequencer

 $(16 \times 45 \times 12)$TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
$\mathrm{t}_{\text {CKL }}$	Interval between clock pulses.
$\mathrm{t}_{\text {CKP }}$	Clock period.
$\mathrm{t}_{\text {PRH }}$	Width of preset input pulse.
${ }^{\text {t/S }}$ 1	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {S } 2}$	Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.
${ }_{\text {th }}$	Required delay between positive transition of clock and end of valid input data.
$\mathrm{t}_{\mathrm{H} 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
${ }_{\text {tcko }}$	Delay between positive transition of clock and when outputs become valid (with OE Low).
toE1	Delay between beginning of Output Enable Low and when outputs become valid.
tod 1	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
$t_{\text {PPR }}$	Delay between V_{CC} (after power-on) and when flip-flop outputs become preset at " 1 " (internal Q outputs at "0").
$t_{\text {PD }}$	Propagation delay between combinational inputs and outputs.
toe2	Delay between predefined Output Enable High, and when combinational outputs become valid.
tod2	Delay between predefined Output Enable Low and when combinational outputs are in the OFF-State.
tpro	Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid.

Programmable logic sequencer

$$
(16 \times 45 \times 12)
$$

TIMING DIAGRAMS (Continued)

Programmable logic sequencer

$$
(16 \times 45 \times 12)
$$

LOGIC PROGRAMMING

The PLS159A is fully supported by industry standard (JEDEC compatible) PLD CAD tools, including Philips Semiconductors' SNAP, Data I/O Corporation's ABELTM and Logical Devices Inc.'s CUPL™ design software packages.

All packages allow Boolean and state equation entry formats. SNAP, ABEL and CUPL also accept, as input, schematic capture format.

PLS159A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Philips Semiconductors SNAP PLD design software package.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE,

COMPLEMENT, INACTIVE, PRESET, etc. are defined below.

PROGRAMMING AND SOFTWARE SUPPORT

Refer to Section 9 (Development Software) and Section 10 (Third-party Programmer/ Software Support) of this data handbook for additional information.
"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

Notes on following page.
"OR" ARRAY - ($\mathrm{Q}_{\mathrm{n}}=\mathrm{D}$-Type)

CAUTION:
THE PLS159A Programming Algorithm is different from the PLS159.

Programmable logic sequencer

$$
(16 \times 45 \times 12)
$$

"OR" ARRAY - ($\mathrm{Q}_{\mathrm{n}}=\mathrm{J}-\mathrm{K}$ Type)

"OR" ARRAY - (S or B)

"EX-OR" ARRAY - (B)

"OE" ARRAY - (E)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if both of the I, B, or Q links are left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates (L, P, R, D) $)_{n}$ due to their lack of "OR" array links.
Programmable logic sequencer $(16 \times 45 \times 12)$

PROGRAM TABLE

Programmable logic sequencer

 $(16 \times 45 \times 12)$
SNAP RESOURCE SUMMARY DESIGNATIONS

