IM5603/IM5623 **Electrically Programmable 1024 Bit Bipolar Read Only Memory**

FEATURES

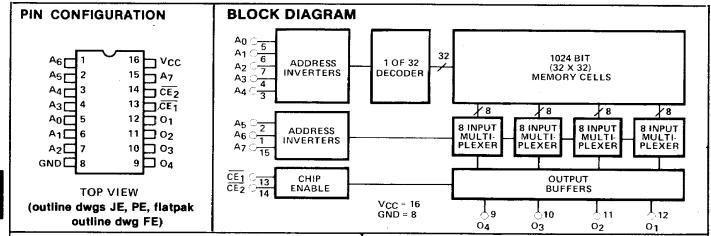
- Uses Patented AIM Programming Element for
 - Superior Reliability

 - High Programming Yield
 Fast Programming Speed < 1 sec
 - TTL Processing Compatibility
- Low Power Consumption 439 μW/bit
- **Operating Speed**
 - Address to Output 60nS
- Chip Enable to Output 35ns
 Large Output Drive 16mA @ 0.45V
 TTL Compatible Inputs & Outputs
- Two Output Designs
- 5603 Öpen Collector
- 5623 Active Pull-up
- Chip Enables Facilitate Memory Expansion and Use in **Bus Organized Systems**

APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming Look-up Tables
- Control of Sequential Circuits
 Character Generation

GENERAL DESCRIPTION


The Intersil IM5603 and IM5623 are high speed, electrically programmable, fully decoded, bipolar 1024 bit read only memories organized as 256 words by 4 bits. On-chip address decoding, chip enable inputs and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.

Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic levels.

The following companies make programmers approved by Intersil:

- 1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash, 98009
- 2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.

ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMPERATURE RANGE	ORDER NUMBER		
IM5603	16 Pin Flatpack	0°C to +75°C Commercial -55°C to +125°C Military	IM5603CFE IM5603MFE*		
	16 Pin Plastic DIP	0°C to +75°C	IM5603CPE		
	16 Pin Cerdip DIP	0°C to +75°C Commercial -55°C to +125°C Military	IM5603CJE IM5603MJE*		
IM5623	16 Pin Flatpack	0°C to +75°C Commercial -55°C to +125°C Military	IM5623CFE IM5623MFE*		
	16 Pin Plastic DIP 16 Pin Cerdip DIP	0°C to +75°C 0°C to +75° C Commercial -55°C to +125°C Military	IM5623CPE IM5623CJE IM5623MJE*		

TRUTH TABLE

ADDRESS INPUTS		NABLE UTS	ANY OUTPUT
A ₀ -A ₇	CE ₁	CE ₂	01-04
Any one of 256 possible addresses	L	L	H-if the bit uniquely associated with this output and address has been electrically programmed. L-if it has not been programmed.
Any one of 256 possible addresses	H X	X H	All outputs are forced to a high impedance state regardless of address.
X = Don't Care			*****

* If 883B processing is desired add /883B to order number.

8-42

This Material Copyrighted By Its Respective Manufacturer

IM5603/IM5623

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+7.0V
Input Voltage Applied	–1.5V to 5.5V
Output Voltage Applied	0.5V to +Vcc
Output Voltage Applied (Programming Only)	
Current Into Output (Programming Only)	
Storage Temperature	65°C to +150°C
Operating Temperature Range*	
(IM5603C and IM5623C)	0°C to +75°C
(IM5603M and IM5623M)	–55° C to +125° C

^{*}Operating temperature is defined as ambient temperature for the DIP and case temperature for flatpack. Case temperature is measured directly below the die.

DC CHARACTERISTICS

		LIMITS V _{CC} = 5.0V ±5% T = 0°C to +75°C		LIMITS V _{CC} = 5.0V ±10% T = -55°C to +125°C						
SYMBOL	CHARACTERISTICS	MIN	IN TYP MAX		MIN TYP MA		MAX	UNITS	CONDITIONS	
IFA	Address Input Load Current		0.63	-1.0		-0.63	-1.0	mA'	V _A = 0.4V	
İFE	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		V _{CE} = 0.4V	
IRA	Address Input Leakage Current		5	40		5	60	μA	V _A = 4.5V	
IRE	Chip Enable Input Leakage Current		5	40		5	60	μ.	V _{CE} = 4.5V	
Vol	Output Low Voltage		0.3	0.45		0.3	0.45		$I_{OL} = 16 \text{ mA},$ $V\overline{CE}_1 = V\overline{CE}_2 = 0.4V$ '0' bit is addressed.	
VIL	Input Low Voltage			0.8			0.8	v		
ViH	Input High Voltage	2.0			2.0] '		
Vc	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5]	I _{IN} = -10 mA	
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5	l		I _{IN} = 1.0 mA	
lcc	Power Supply Current		90	130		90	130	mA	Inputs Either Open or at Ground	
lo (High R Stat	e)Output Leakage Current		<1	40		<1	100		$V_0 = 5.5V$ $V_{\overline{CE}1}$ or	
_	e)Output Leakage Current		<-1	-40		<-1	-100	μΑ	$V_0 = 0.4V V_{CE2} = 2.4V$	
Cin	Input Capacitance		5			5]	$V_{IN} = 2.0V$, $V_{CC} = 0V$	
Соит	Output Capacitance		7			7		pF	$V_0 = 2.0V, V_{CC} = 0V$	

The following are guaranteed characteristics of the output high level state when the chip is enabled (CE1 and CE2 = 0.4V) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

lolk	Output Leakage Current	Į .	<1	100		<1	100	μΑ	$V_0 = 5.5V$
VoH (IM5603)	Output High Voltage	2.4	3.3		2.4	3.3			Ioн = -0.4 mA
Von (IM5623)	Output High Voltage	2.4	3.2		2.4	3.2		٧	I _{OH} = -2.4 mA (IM\$623C) I _{OH} = -1.0 mA (IM\$623M)
Isc (IM5603)	Output Short Circuit Current	-1.0	3.0	-6.0	-1.0	-3.0	-6.0	mA	$V_0 = 0V$
Isc (IM5623)	Output Short Circuit Current	-15	-30	-60	-15	-30	- 60		$V_0 = 0V$

NOTE: Typical characteristics are for $V_{CC} = 5.0 \text{V T}_A = 25^{\circ} \text{C}$.

SWITCHING CHARACTERISTICS

		LIMITS V _{CC} = 5.0V T _A = 25°C		V _{CC} = §	AITS 5.0V ±5% 5 to +75°C	LIMITS V _{CC} = 5.0V ±10% T _A = -55°C to +125°C		V _{CC} = 5.0V ±10%		
SYMBOL	CHARACTERISTICS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS		
t _{aa}	Access Time (Via Address Inputs) (See Figure 1)	20	60	20	70	20	80			
t _{dis}	Output Disable Time* (See Figure 2)	10	35	10	50	10	60	ns		
t _{en}	Output Enable Time* (See Figure 2)	5	35	5	50	5	60			

*NOTE: Output disable time is the time taken for the output to reach a high resistance state when either chip enable is taken high. Output enable time is the time taken for the output to become active when both chip enables are taken low. The high resistance state is defined as a point on the output waveform equal to a ΔV of 0.5V from the active output level.

SWITCHING WAVEFORMS

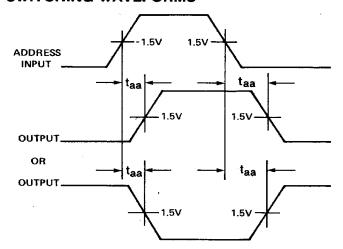


FIGURE 1: Access Time Via Address Inputs

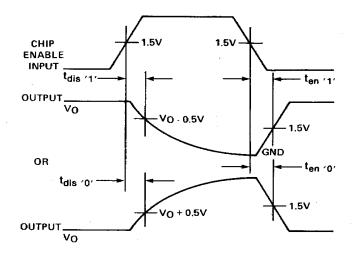
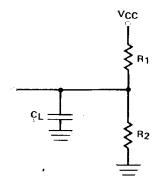



FIGURE 2: Output Enable And Disable Times

8

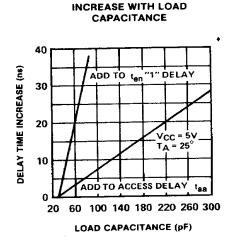
SWITCHING TIME TEST CONDITIONS

F	GL	JRE	3:	Output	Load	Circuit
---	----	-----	----	--------	------	---------

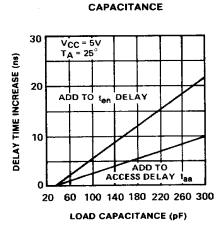
SWITCHING		IM5603				
PARAMETER	R ₁	R ₂	CL	R ₁	R ₂	CL
t _{aa}	300Ω	600Ω	30 pF	300Ω	600Ω	30 pF
t _{dis '1'}	∞	3.3 KΩ	10 pF	∞	600Ω	10 pF
tdis '0'	300Ω	600Ω	10 pF	300Ω	600Ω	10 pF
t _{en '1'}	∞	3.3 KΩ	30 pF	∞	600Ω	30 pF
t _{en '0'}	300Ω	600Ω	30 pF	300Ω	600Ω	30 pF

INPUT CONDITIONS

Amplitude — 0V to 3V Rise and Fall Time — 5 ns From 1V to 2V Frequency — 1 MHz


8-44

This Material Copyrighted By Its Respective Manufacturer



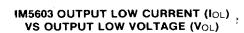
TYPICAL SWITCHING CHARACTERISTICS

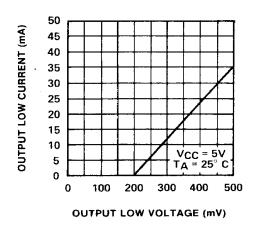
IM5603 CHIP ENABLE TO IM5603 ADDRESS TO IM5603 CHIP ENABLE TO OUTPUT ACCESS **OUTPUT DISABLE TIME OUTPUT ACCESS DELAY** (TAA) VS TEMPERATURE DELAY (ten) VS DELAY (tDIS) VS TEMPERATURE **TEMPERATURE** 75% OF DELAY IS ٧œ tEN'1' RISE TIME TO 1.5V 90 ten W 90 90 ten 80 80 80 "1" **₹**0.6¥ ten ^tdis ′0′ 9 70 70 70 Vcc = 4.5V ACCESS TIME (ns) ENABLE TIME (ns 60 V_{CC} = 5.0V 60 60 VCC = 4.5V DISABLE TIME 50 50 50 = 5.0V Vcc 40 40 40 CC = 4.5V V_{CC} = 5.5V CC = 5.0V = 5.5V 30 30 30 V_{CC} = 4.5V VCC = 5.5V 20 20 = 5.0V 20 10 = 5.5V 10 10 0 0 0 -55 -25 0 +25 +75 +125 +75 +125 -250 +25 +75 +125 -55 -55 --25 0 + 25TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) IM5623 CHIP ENABLE TO OUTPUT DISABLE TIME **IM5623 CHIP ENABLE TO IM5623 ADDRESS TO OUTPUT ACCESS DELAY** DELAY (tDIS) VS **OUTPUT ACCESS DELAY** TEMPERATURE (ten) VS TEMPERATURE (taa) VS TEMPERATURE 90 90 90 0.3k 0.3k 80 Ver 80 80 **\$**0.6k tdis '0' 9 'O' 70 70 70 DISABLE TIME (ns) ACCESS TIME (ns) 60 60 60 V_{CC} = 4.5V 50 50 50 VCC = 5.0V 40 40 40 cc. VCC = 4.5V VCC = 5.0V 30 30 30 VCC = 5.0V /CC = 5.5V V_{CC} = 5.5V 20 20 20 10 10 10 0 0 Λ -25 0 +25 +75 +125 -55 -55 -25 0 +25 +75 +75 +125 -55 -25 0 +25 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C)

IM5603 DELAY

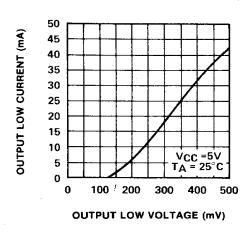
IM5623 DELAY

INCREASE WITH LOAD

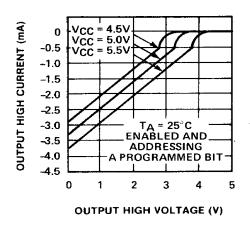

8-45

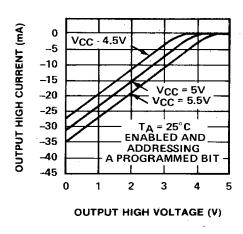

This Material Copyrighted By Its Respective Manufacturer

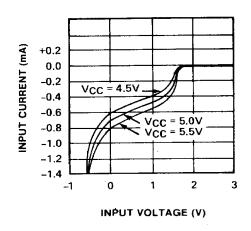
IM5603/IM5623

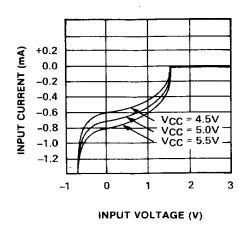

INTERSIL

TYPICAL DC CHARACTERISTICS

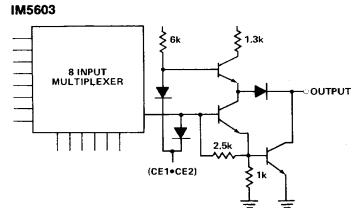



IM5623 OUTPUT LOW CURRENT (I_{OL}) VS OUTPUT LOW VOLTAGE (V_{OL})


IM5603 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)


IM5623 OUTPUT HIGH CURRENT (IOH)
VS OUTPUT HIGH VOLTAGE (VOH)

IM5603 OR IM5623 CHIP ENABLE INPUT CURRENT VS INPUT VOLTAGE



IM5603 OR IM5623 ADDRESS INPUT CURRENT VS INPUT VOLTAGE

8-46

OUTPUT STAGE SCHEMATICS

IM5623 1.3k 100Ω 8 INPUT MULTIPLEXER (CE1•CE2) 1k