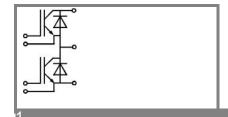


Superfast NPT-IGBT Modules

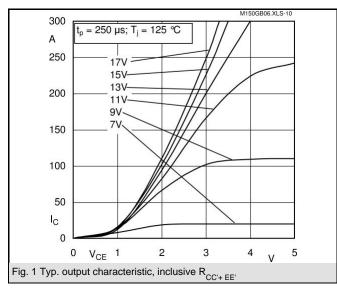
SKM 150GB063D

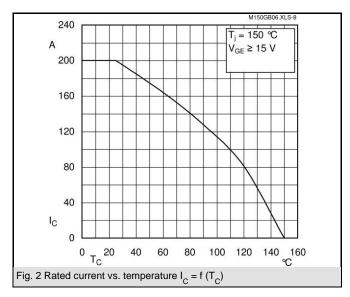
Features

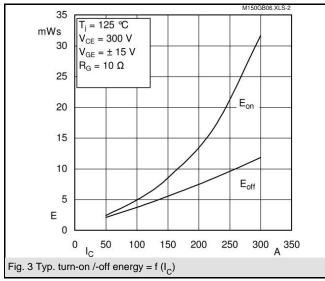

- N channel, Homogeneous Silicon structure (NPT - Non punch-through IGBT)
- · Low tail current with low temperature dependence
- · High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff- of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- · Fast & soft inverse CAL diodes
- · Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)

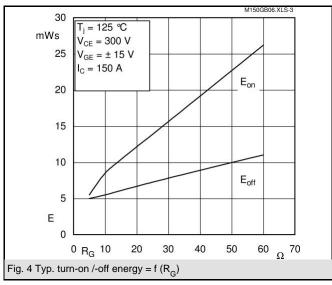
Typical Applications

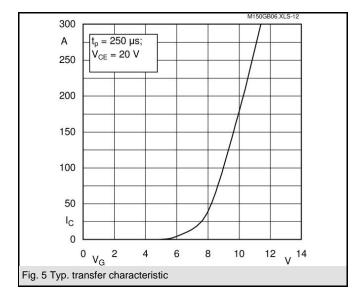
- Switching (not for linear use)
- Switched mode power supplies
- UPS
- AC inverter servo drives
- Pulse frequencies also above 10 kHz
- · Welding inverters

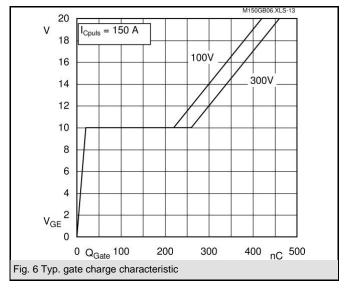

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		600	V				
I _C	T _c = 25 (70) °C	200 (150)	Α				
I _{CRM}	t _p = 1 ms	300	Α				
V_{GES}		±20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	-40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F	T _c = 25 (80) °C	130 (90)	Α				
I _{FRM}	t _p = 1 ms	300	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	880	Α				

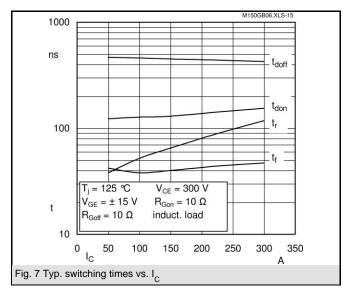

Characte	Characteristics T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C		0,15	0,45	mA	
V _{CE(TO)}	T _j = 25 (125) °C		1,05 (1)		V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		7 (8,7)		mΩ	
V _{CE(sat)}	I_{Cnom} = 150 A, V_{GE} = 15 V, chip level		2,1 (2,4)	2,5 (2,8)	V	
C _{ies}	under following conditions		8,4		nF	
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1		nF	
C _{res}			0,6		nF	
L _{CE}				20	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ	
t _{d(on)}	V _{CC} = 300 V, I _{Cnom} = 150 A		130		ns	
t _r	$R_{Gon} = R_{Goff} = 10 \Omega$, $T_j = 125 °C$		65		ns	
$t_{d(off)}$	V _{GE} = ± 15 V		450		ns	
t _f			40		ns	
E_{on} (E_{off})			8,5 (5,5)		mJ	
Inverse d	liode					
$V_F = V_{EC}$	$I_{\text{Enom}} = 150 \text{ A}; V_{\text{GE}} = 0 \text{ V}; T_{j} = 25 (125)$		1,55 (1,55)	1,9	V	
V _(TO)	T _i = 125 () °C			0,9	V	
r _T	T _j = 125 () °C		6	8	$m\Omega$	
I _{RRM}	I _{Fnom} = 150 A; T _j = 125 () °C		53		Α	
Q_{rr}	di/dt = A/µs		8,1		μC	
E _{rr}	V _{GE} = V				mJ	
Thermal	characteristics					
R _{th(j-c)}	per IGBT			0,18	K/W	
R _{th(j-c)D}	per Inverse Diode			0,5	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechanic	cal data					
M_s	to heatsink M6	3		5	Nm	
M_t	to terminals M6	2,5		5	Nm	
w				325	g	

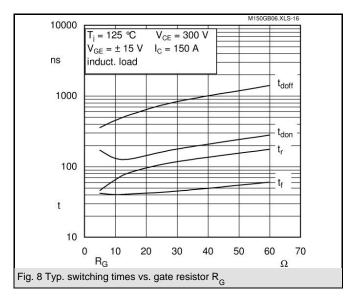


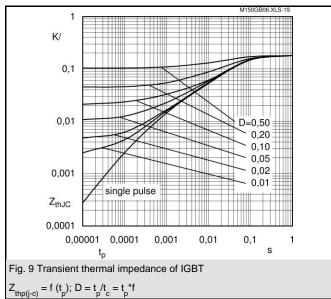

SKM 150GB063D						
GB						

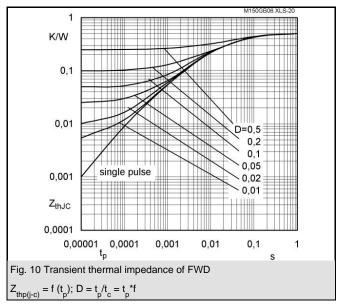

2 09-03-2006 RAA © by SEMIKRON

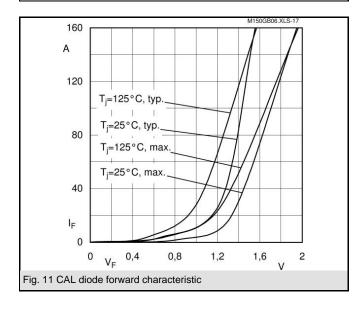


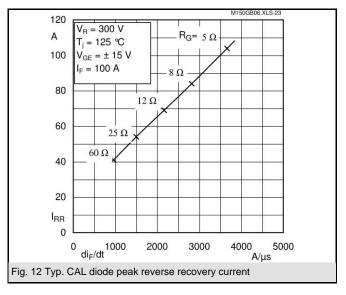


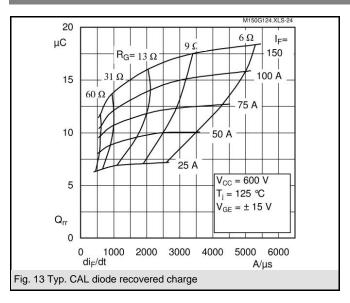


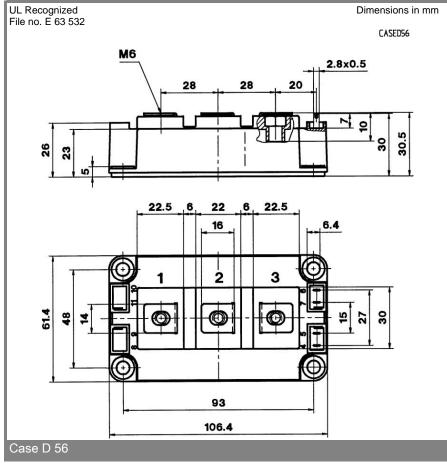


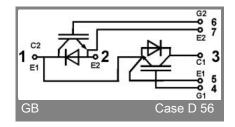












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.