Advanced Power Electronics Corp.

FEATURES

- Synchronous Controller in 8-Pin Package
- Operating with single 5 V or 12 V supply voltage
- Internal 200 KHz Oscillator
(400KHz for APU3037A)
- Soft-Start Function
- Fixed Frequency Voltage Mode
- 500 mA Peak Output Drive Capability
- Protects the output when control FET is shorted
- RoHS Compliant

APPLICATIONS
DDR memory source sink Vtt application

- Low cost on-board DC to DC such as 5 V to 3.3 V , 2.5 V or 1.8 V
- Graphic Card
- Hard Disk Drive

8-PIN SYNCHRONOUS PWM CONTROLLER DESCRIPTION

The APU3037 controller IC is designed to provide a low cost synchronous Buck regulator for on-board DC to DC converter applications. With the migration of today's ASIC products requiring low supply voltages such as 1.8 V and lower, together with currents in excess of 3A, traditional linear regulators are simply too lossy to be used when input supply is 5 V or even in some cases with 3.3 V input supply. The APU3037 together with dual N-channel MOSFETs such as AP60T03, provide a low cost solution for such applications. This device features an internal 200 KHz oscillator (400KHz for "A" version), under-voltage lockout for both Vcc and Vc supplies, an external programmable soft-start function as well as output un-der-voltage detection that latches off the device when an output short is detected.

TYPICAL APPLICATION

Figure 1 - Typical application of APU3037 or APU3037A.

PACKAGE ORDER INFORMATION

T $_{\mathbf{A}}\left({ }^{\circ} \mathbf{C}\right)$	DEVICE	PACKAGE	FREQUENCY
0 To 70	APU30370	8-Pin Plastic TSSOP (O)	200 KHz
0 To 70	APU3037M/MP	8-Pin Plastic SOIC NB (M/MP)	200 KHz
0 To 70	APU3037AO	8-Pin Plastic TSSOP (O)	400 KHz
0 To 70	APU3037AM/AMP	8-Pin Plastic SOIC NB (M/MP)	400 KHz

ABSOLUTE MAXIMUM RATINGS

Vcc Supply Voltage

25V

Vc Supply Voltage
30 V (not rated for inductive load)
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ To $150^{\circ} \mathrm{C}$
Operating Junction Temperature Range
$0^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device.

PACKAGE INFORMATION

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Vc}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$. Typical values refer to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Reference Voltage Fb Voltage	$V_{\text {fв }}$	APU3037 APU3037A	$\begin{aligned} & 1.225 \\ & 0.784 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.250 \\ & 0.800 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.275 \\ & 0.816 \\ & \hline \end{aligned}$	V
Fb Voltage Line Regulation	Lreg	$5<\mathrm{Vcc}<12$		0.2	0.35	\%
UVLO UVLO Threshold - Vcc	UVLO Vcc	Supply Ramping Up	4.0	4.2	4.4	V
UVLO Hysteresis - Vcc				0.25		V
UVLO Threshold - Vc	UVLO Vc	Supply Ramping Up	3.1	3.3	3.5	V
UVLO Hysteresis - Vc				0.2		V
UVLO Threshold - Fb	UVLO Fb	Fb Ramping Down (APU3037) (APU3037A)	$\begin{aligned} & \hline 0.4 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \\ & \hline \end{aligned}$	V
UVLO Hysteresis - Fb				0.1		V
Supply Current Vcc Dynamic Supply Current	Dyn Icc	Freq=200KHz, $\mathrm{C}=1500 \mathrm{pF}$	2	5	8	mA
Vc Dynamic Supply Current	Dyn lc	Freq=200KHz, CL=1500pF	2	7	10	mA
Vcc Static Supply Current	lco	SS=0V	1	3.3	6	mA
Vc Static Supply Current	lca	SS=0V	0.5	1	4.5	mA
Soft-Start Section Charge Current	SSib	SS=0V	-10	-20	-30	$\mu \mathrm{A}$

Advanced Power
Electronics Corp.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Error Amp Fb Voltage Input Bias Current	IFB1	$\mathrm{SS}=3 \mathrm{~V}, \mathrm{Fb}=1 \mathrm{~V}$		-0.1		$\mu \mathrm{A}$
Fb Voltage Input Bias Current	lfB2	$\mathrm{SS}=0 \mathrm{~V}, \mathrm{Fb}=1 \mathrm{~V}$		-64		$\mu \mathrm{A}$
Transconductance	gm		450	600	750	$\mu \mathrm{mho}$
Oscillator Frequency	Freq	APU3037 APU3037A	$\begin{array}{r} 180 \\ 360 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 440 \\ & \hline \end{aligned}$	KHz
Ramp-Amplitude Voltage	$V_{\text {ramp }}$		1.225	1.25	1.275	V
Output Drivers Rise Time	Tr	$\mathrm{CL}=1500 \mathrm{pF}$		50	100	ns
Fall Time	Tf	CL=1500pF		50	100	ns
Dead Band Time	TdB		50	150	250	ns
Max Duty Cycle	Ton	$\mathrm{Fb}=1 \mathrm{~V}$, Freq= 200 KHz	85	90	95	\%
Min Duty Cycle	TofF	$\mathrm{Fb}=1.5 \mathrm{~V}$	0	0		\%

PIN DESCRIPTIONS

PIN\#	PIN SYMBOL	PIN DESCRIPTION
1	Fb	This pin is connected directly to the output of the switching regulator via resistor divider to provide feedback to the Error amplifier.
2	Vcc	This pin provides biasing for the internal blocks of the IC as well as power for the low side driver. A minimum of $1 \mu \mathrm{~F}$, high frequency capacitor must be connected from this pin to ground to provide peak drive current capability.
3	LDrv	Output driver for the synchronous power MOSFET.
4	Gnd	This pin serves as the ground pin and must be connected directly to the ground plane. A high frequency capacitor (0.1 to $1 \mu \mathrm{~F})$ must be connected from V5 and V12 pins to this pin for noise free operation.
5	HDrv	Output driver for the high side power MOSFET. Connect a diode, such as BAT54 or 1N4148, from this pin to ground for the application when the inductor current goes negative (Source/ Sink), soft-start at no load and for the fast load transient from full load to no load.
6	Vc	This pin is connected to a voltage that must be at least 4V higher than the bus voltage of the switcher (assuming 5V threshold MOSFET) and powers the high side output driver. A minimum of $1 \mu \mathrm{~F}$, high frequency capacitor must be connected from this pin to ground to provide peak drive current capability.
7	Comp	Compensation pin of the error amplifier. An external resistor and capacitor network is typically connected from this pin to ground to provide loop compensation.
8	SS / $\overline{\text { SD }}$	This pin provides soft-start for the switching regulator. An internal current source charges an external capacitor that is connected from this pin to ground which ramps up the output of the switching regulator, preventing it from overshooting as well as limiting the input current. The converter can be shutdown by pulling this pin below 0.5V.

Figure 2 - Simplified block diagram of the APU3037.

THEORY OF OPERATION

Introduction

The APU3037 is a fixed frequency, voltage mode synchronous controller and consists of a precision reference voltage, an error amplifier, an internal oscillator, a PWM comparator, 0.5 A peak gate driver, soft-start and shutdown circuits (see Block Diagram).

The output voltage of the synchronous converter is set and controlled by the output of the error amplifier; this is the amplified error signal from the sensed output voltage and the reference voltage.

This voltage is compared to a fixed frequency linear sawtooth ramp and generates fixed frequency pulses of variable duty-cycle, which drives the two N -channel external MOSFETs. The timing of the IC is provided through an internal oscillator circuit which uses on-chip capacitor to set the oscillation frequency to $200 \mathrm{KHz}(400 \mathrm{KHz}$ for "A" version).

Soft-Start

The APU3037 has a programmable soft-start to control the output voltage rise and limit the current surge at the start-up. To ensure correct start-up, the soft-start sequence initiates when the Vc and Vcc rise above their threshold (3.3 V and 4.2 V respectively) and generates
the Power On Reset (POR) signal. Soft-start function operates by sourcing an internal current to charge an external capacitor to about 3 V . Initially, the soft-start function clamps the E/A's output of the PWM converter. As the charging voltage of the external capacitor ramps up, the PWM signals increase from zero to the point the feedback loop takes control.

Short-Circuit Protection

The outputs are protected against the short-circuit. The APU3037 protects the circuit for shorted output by sensing the output voltage (through the external resistor divider). The APU3037 shuts down the PWM signals, when the Fb voltage drops below 0.6 V (0.4 V for APU3037A).

The APU3037 also protects the output from over-voltaging when the control FET is shorted. This is done by turning on the sync FET with the maximum duty cycle.

Under-Voltage Lockout

The under-voltage lockout circuit assures that the MOSFET driver outputs remain in the off state whenever the supply voltage drops below set parameters. Lockout occurs if Vc and Vcc fall below 3.3 V and 4.2 V respectively. Normal operation resumes once Vc and Vcc rise above the set values.

APU3037 / APU3037A

APPLICATION INFORMATION

Design Example:

The following example is a typical application for APU3037, the schematic is Figure 18 on page 14.

$$
\begin{aligned}
& \mathrm{V} \text { IN }=5 \mathrm{~V} \\
& \text { Vout }=3.3 \mathrm{~V} \\
& \text { lout }=4 \mathrm{~A} \\
& \Delta \mathrm{Vout}=100 \mathrm{mV} \\
& \mathrm{fs}_{\mathrm{s}}=200 \mathrm{KHz}
\end{aligned}
$$

Output Voltage Programming

Output voltage is programmed by reference voltage and external voltage divider. The Fb pin is the inverting input of the error amplifier, which is internally referenced to 1.25 V (0.8 V for APU3037A). The divider is ratioed to provide 1.25 V at the Fb pin when the output is at its desired value. The output voltage is defined by using the following equation:

$$
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }} \times\left(1+\frac{R_{6}}{R_{5}}\right) \tag{1}
\end{equation*}
$$

When an external resistor divider is connected to the output as shown in Figure 3.

Figure 3 - Typical application of the APU3037 for programming the output voltage.

Equation (1) can be rewritten as:

$$
R_{6}=R_{5} \times\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)
$$

Choose $\mathrm{R}_{5}=1 \mathrm{~K} \Omega$
This will result to $\mathrm{R}_{6}=1.65 \mathrm{~K} \Omega$
If the high value feedback resistors are used, the input bias current of the Fb pin could cause a slight increase in output voltage. The output voltage set point can be more accurate by using precision resistor.

Soft-Start Programming

The soft-start timing can be programmed by selecting the soft start capacitance value. The start up time of the converter can be calculated by using:
tstart $=75 \times$ Css (ms)
Where:
Css is the soft-start capacitor ($\mu \mathrm{F}$)
For a start-up time of 7.5 ms , the soft-start capacitor will be $0.1 \mu \mathrm{~F}$. Choose a ceramic capacitor at $0.1 \mu \mathrm{~F}$.

Shutdown

The converter can be shutdown by pulling the soft-start pin below 0.5 V . The control MOSFET turns off and the synchronous MOSFET turns on during shutdown.

Boost Supply Vc

To drive the high-side switch it is necessary to supply a gate voltage at least 4 V greater than the bus voltage. This is achieved by using a charge pump configuration as shown in Figure 18. The capacitor is charged up to approximately twice the bus voltage. A capacitor in the range of $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ is generally adequate for most applications. In application, when a separate voltage source is available the boost circuit can be avoided as shown in Figure 1.

Input Capacitor Selection

The input filter capacitor should be based on how much ripple the supply can tolerate on the DC input line. The larger capacitor, the less ripple expected but consider should be taken for the higher surge current during the power-up. The APU3037 provides the soft-start function which controls and limits the current surge. The value of the input capacitor can be calculated by the following formula:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{IN}}=\frac{\mathrm{liN} \times \Delta \mathrm{t}}{\Delta \mathrm{~V}} \tag{3}
\end{equation*}
$$

Where:
CIN is the input capacitance ($\mu \mathrm{F}$)
lin is the input current (A)
Δt is the turn on time of the high-side switch ($\mu \mathrm{s}$)
$\Delta \mathrm{V}$ is the allowable peak to peak voltage ripple (V)

Assuming the following:

$$
\begin{aligned}
& \Delta V=1 \%(\mathrm{~V} \text { IN }), \text { Efficiency }(\eta)=90 \% \\
& \Delta t=\mathrm{D} \times \frac{1}{\mathrm{fs}} \rightarrow \Delta t=3.3 \mu \mathrm{~s} \\
& \operatorname{liN}=\frac{\mathrm{Vo} \times \mathrm{lo}}{\eta \times \mathrm{V}_{\mathrm{IN}}} \rightarrow \quad \operatorname{IIN}=2.93 \mathrm{~A}
\end{aligned}
$$

By using equation (3), CIN $=193.3 \mu \mathrm{~F}$
For higher efficiency, low ESR capacitor is recommended. Choose two $100 \mu \mathrm{~F}$ capacitors.

The Sanyo TPB series PosCap capacitor $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ with $55 \mathrm{~m} \Omega$ ESR is a good choice.

Output Capacitor Selection

The criteria to select the output capacitor is normally based on the value of the Effective Series Resistance (ESR). In general, the output capacitor must have low enough ESR to meet output ripple and load transient requirements, yet have high enough ESR to satisfy stability requirements. The ESR of the output capacitor is calculated by the following relationship:

$$
\begin{equation*}
\mathrm{ESR} \leq \frac{\Delta \mathrm{V}_{\mathrm{o}}}{\Delta \mathrm{l}_{\mathrm{o}}} \tag{4}
\end{equation*}
$$

Where:
$\Delta \mathrm{V}_{\mathrm{o}}=$ Output Voltage Ripple
$\Delta \mathrm{lo}=$ Output Current
$\Delta \mathrm{V}_{\mathrm{o}}=100 \mathrm{mV}$ and $\Delta \mathrm{lo}=4 \mathrm{~A}$
Results to $E S R=25 \mathrm{~m} \Omega$
The Sanyo TPC series, PosCap capacitor is a good choice. The 6TPC150M $150 \mu \mathrm{~F}, 6.3 \mathrm{~V}$ has an ESR $40 \mathrm{~m} \Omega$. Selecting two of these capacitors in parallel, results to an ESR of $\cong 20 \mathrm{~m} \Omega$ which achieves our low ESR goal.

The capacitor value must be high enough to absorb the inductor's ripple current. The larger the value of capacitor, the lower will be the output ripple voltage.

Inductor Selection

The inductor is selected based on output power, operating frequency and efficiency requirements. Low inductor value causes large ripple current, resulting in the smaller size, but poor efficiency and high output noise. Generally, the selection of inductor value can be reduced to desired maximum ripple current in the inductor ($\Delta \mathrm{i}$). The optimum point is usually found between 20% and 50% ripple of the output current.

For the buck converter, the inductor value for desired operating ripple current can be determined using the following relation:

$$
\begin{align*}
& \text { Vin }- \text { Vout }=\mathrm{L} \times \frac{\Delta \mathrm{i}}{\Delta \mathrm{t}} ; \Delta \mathrm{t}=\mathrm{D} \times \frac{1}{\mathrm{fs}_{\mathrm{s}}} ; \mathrm{D}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {IN }}} \\
& \mathrm{L}=\left(\mathrm{V}_{\text {IN }}-\text { Vout }\right) \times \frac{\mathrm{Vout}}{\mathrm{~V}_{\text {IN }} \times \Delta \mathrm{i} \times \mathrm{fs}}---(5) \tag{5}\\
& \text { Where: } \\
& \mathrm{V}_{\text {IN }}=\text { Maximum Input Voltage } \\
& \text { Vout = Output Voltage } \\
& \Delta \mathrm{i}=\text { Inductor Ripple Current } \\
& \mathrm{fs}_{\mathrm{S}}=\text { Switching Frequency } \\
& \Delta \mathrm{t}=\text { Turn On Time } \\
& \mathrm{D}=\text { Duty Cycle }
\end{align*}
$$

If $\Delta i=20 \%$ (lo), then the output inductor will be:

$$
\mathrm{L}=7 \mu \mathrm{H}
$$

The Toko D124C series provides a range of inductors in different values, low profile suitable for large currents, $10 \mu \mathrm{H}, 4.2 \mathrm{~A}$ is a good choice for this application. This will result to a ripple approximately 14% of output current.

Power MOSFET Selection

The APU3037 uses two N-Channel MOSFETs. The selections criteria to meet power transfer requirements is based on maximum drain-source voltage (VDss), gatesource drive voltage (V_{GS}), maximum output current, Onresistance Ros(on) and thermal management.

The MOSFET must have a maximum operating voltage (Voss) exceeding the maximum input voltage (Vin).

The gate drive requirement is almost the same for both MOSFETs. Logic-level transistor can be used and caution should be taken with devices at very low Vas to prevent undesired turn-on of the complementary MOSFET, which results a shoot-through current.

The total power dissipation for MOSFETs includes conduction and switching losses. For the Buck converter the average inductor current is equal to the DC load current. The conduction loss is defined as:

```
Pcond (Upper Switch) \(=\) lioad \(_{2} \times \operatorname{RdS(ON)} \times \mathrm{D} \times \vartheta\)
PCond (Lower Switch) \(=l_{\text {LOAd }}^{2} \times \operatorname{RdS(ON)} \times(1-\mathrm{D}) \times \vartheta\)
\(\vartheta=\operatorname{Rds}(o n)\) Temperature Dependency
```

The Rds(on) temperature dependency should be considered for the worst case operation. This is typically given in the MOSFET data sheet. Ensure that the conduction losses and switching losses do not exceed the package ratings or violate the overall thermal budget.

For this design, AP60T03GH is a good choice. The device provides low on-resistance in a TO-252 package.

The AP60T03GH has the following data:
Voss $=30 \mathrm{~V}$
$\mathrm{lo}=4.5 \mathrm{~A}$
$\operatorname{Ros}_{(0 n)}=0.012 \Omega$
The total conduction losses will be:
$\mathrm{P}_{\text {con(total })}=\mathrm{P} \operatorname{con}($ Upper Switch) $+\mathrm{Pcon}($ Lower Switch)
$\operatorname{Pcon(total)}=\mathrm{L}_{\text {Load }}^{2} \times \operatorname{Rds(ON)} \times \vartheta$
$\vartheta=1.5$ according to the AP60T03GH data sheet for $150^{\circ} \mathrm{C}$ junction temperature
$\mathrm{Pcon}_{\text {(TOTAL }}=0.288 \mathrm{~W}$
The switching loss is more difficult to calculate, even though the switching transition is well understood. The reason is the effect of the parasitic components and switching times during the switching procedures such as turn-on / turnoff delays and rise and fall times. With a linear approximation, the total switching loss can be expressed as:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{sw}}=\frac{\mathrm{V}_{\mathrm{DS}(\mathrm{OFF})}}{2} \times \frac{\mathrm{tr}+\mathrm{tf}}{\mathrm{~T}} \times \mathrm{l} \text { LOAD } \tag{6}
\end{equation*}
$$

Where:
VDs(OFF) $=$ Drain to Source Voltage at off time
tr = Rise Time
$\mathrm{tf}=$ Fall Time
T = Switching Period
lload = Load Current
The switching time waveform is shown in figure 4.

Figure 4 - Switching time waveforms.
From AP60T03GH data sheet we obtain:

$$
\begin{aligned}
& \mathrm{tr}=57.5 \mathrm{~ns} \\
& \mathrm{tf}=6.4 \mathrm{~ns}
\end{aligned}
$$

These values are taken under a certain condition test. For more detail please refer to the AP60T03GH data sheet.

By using equation (6), we can calculate the switching losses.

$$
\text { Psw }=0.127 \mathrm{~W}
$$

Feedback Compensation

The APU3037 is a voltage mode controller; the control loop is a single voltage feedback path including error amplifier and error comparator. To achieve fast transient response and accurate output regulation, a compensation circuit is necessary. The goal of the compensation network is to provide a closed loop transfer function with the highest 0 dB crossing frequency and adequate phase margin (greater than 45°).

The output LC filter introduces a double pole, $-40 \mathrm{~dB} /$ decade gain slope above its corner resonant frequency, and a total phase lag of 180° (see Figure 5). The Resonant frequency of the LC filter expressed as follows:

$$
\begin{equation*}
\mathrm{FLC}=\frac{1}{2 \pi \times \sqrt{\mathrm{Lo} \times \mathrm{Co}_{\circ}}} \tag{7}
\end{equation*}
$$

Figure 5 shows gain and phase of the LC filter. Since we already have 180° phase shift just from the output filter, the system risks being unstable.

Figure 5 - Gain and phase of LC filter.
The APU3037's error amplifier is a differential-input transconductance amplifier. The output is available for DC gain control or AC phase compensation.

The E/A can be compensated with or without the use of local feedback. When operated without local feedback the transconductance properties of the E/A become evident and can be used to cancel one of the output filter poles. This will be accomplished with a series RC circuit from Comp pin to ground as shown in Figure 6.

Note that this method requires that the output capacitor should have enough ESR to satisfy stability requirements. In general the output capacitor's ESR generates a zero typically at 5 KHz to 50 KHz which is essential for an acceptable phase margin.

The ESR zero of the output capacitor expressed as follows:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{ESR}}=\frac{1}{2 \pi \times \mathrm{ESR} \times \mathrm{Co}} \tag{8}
\end{equation*}
$$

Figure 6 - Compensation network without local feedback and its asymptotic gain plot.

The transfer function (Ve / Vout) is given by:

$$
\begin{equation*}
H(s)=\left(g_{m} \times \frac{R_{5}}{R_{6}+R_{5}}\right) \times \frac{1+s R_{4} C_{9}}{s C_{9}} \tag{9}
\end{equation*}
$$

The (s) indicates that the transfer function varies as a function of frequency. This configuration introduces a gain and zero, expressed by:

$$
\begin{align*}
& |H(s)|=g_{m} \times \frac{R_{5}}{R_{6} \times R_{5}} \times R_{4} \tag{10}\\
& F_{z}=\frac{1}{2 \pi \times R_{4} \times C_{9}}
\end{align*}
$$

The gain is determined by the voltage divider and E/A's transconductance gain.

First select the desired zero-crossover frequency (Fo):

$$
\text { Fo }>\text { FESR and } F_{0} \leq(1 / 5 \sim 1 / 10) \times \text { fs }
$$

Use the following equation to calculate R_{4} :

$$
\begin{equation*}
R_{4}=\frac{V_{\text {OSC }}}{V_{I N}} \times \frac{F_{0} \times F_{\text {ESR }}}{F_{L C^{2}}} \times \frac{R_{5}+R_{6}}{R_{5}} \times \frac{1}{g_{m}} \tag{12}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{IN}}=$ Maximum Input Voltage
Vosc = Oscillator Ramp Voltage
Fo = Crossover Frequency
FESR = Zero Frequency of the Output Capacitor
FLc = Resonant Frequency of the Output Filter
R_{5} and $R_{6}=$ Resistor Dividers for Output Voltage Programming
$\mathrm{g}_{\mathrm{m}}=$ Error Amplifier Transconductance
For:
$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$
Vosc $=1.25 \mathrm{~V}$
$\mathrm{Fo}=30 \mathrm{KHz}$
$\mathrm{F}_{\text {ESR }}=26.52 \mathrm{KHz}$
$\mathrm{FLC}=2.9 \mathrm{KHz}$
$\mathrm{R}_{5}=1 \mathrm{~K}$
$\mathrm{R}_{6}=1.65 \mathrm{~K}$
$\mathrm{g}_{\mathrm{m}}=600 \mu \mathrm{mho}$
This results to $R_{4}=104.4 \mathrm{~K} \Omega$. Choose $\mathrm{R}_{4}=105 \mathrm{~K} \Omega$
To cancel one of the LC filter poles, place the zero before the LC filter resonant frequency pole:
$\mathrm{Fz} \cong 75 \% \mathrm{~F}$ Lc
$\mathrm{Fz} \cong 0.75 \times \frac{1}{2 \pi \sqrt{\text { Lo } \times \mathrm{Co}_{0}}}$
For:
Lo $=10 \mu \mathrm{H}$
$\mathrm{Co}=300 \mu \mathrm{~F}$
$\mathrm{Fz}=2.17 \mathrm{KHz}$
$\mathrm{R}_{4}=86.6 \mathrm{~K} \Omega$
Using equations (11) and (13) to calculate C_{9}, we get:

$$
\begin{aligned}
& \mathrm{C}_{9}=698 \mathrm{pF} \\
& \text { Choose } \mathrm{C}_{9}=680 \mathrm{pF}
\end{aligned}
$$

One more capacitor is sometimes added in parallel with C_{9} and R_{4}. This introduces one more pole which is mainly used to supress the switching noise. The additional pole is given by:

$$
\mathrm{F}_{\mathrm{P}}=\frac{1}{2 \pi \times \mathrm{R}_{4} \times \frac{\mathrm{C}_{9} \times \mathrm{C}_{\text {POLE }}}{\mathrm{C}_{9}+\mathrm{C}_{\text {POLE }}}}
$$

The pole sets to one half of switching frequency which results in the capacitor Cpole:

$$
\begin{aligned}
& \text { CPOLE }=\frac{1}{\pi \times R_{4} \times f_{s}-\frac{1}{C_{9}}} \cong \frac{1}{\pi \times R_{4} \times f_{s}} \\
& \text { for } F_{P} \ll \frac{f_{s}}{2}
\end{aligned}
$$

For a general solution for unconditionally stability for any type of output capacitors, in a wide range of ESR values we should implement local feedback with a compensation network. The typically used compensation network for voltage-mode controller is shown in Figure 7.

Figure 7 - Compensation network with local feedback and its asymptotic gain plot.

In such configuration, the transfer function is given by:

$$
\frac{V_{e}}{V_{\text {out }}}=\frac{1-g_{m Z}}{1+g_{m Z i n}}
$$

The error amplifier gain is independent of the transconductance under the following condition:

$$
\begin{equation*}
g_{m} Z_{f} \gg 1 \quad \text { and } \quad g_{m} Z_{N} \gg 1 \tag{14}
\end{equation*}
$$

By replacing Z_{N} and Z_{f} according to Figure 7, the transformer function can be expressed as:
$H(s)=\frac{1}{s R_{6}\left(\mathrm{C}_{12}+\mathrm{C}_{11}\right)} \times \frac{\left(1+\mathrm{sR}_{7} \mathrm{C}_{11}\right) \times\left[1+\mathrm{sC}_{10}\left(\mathrm{R}_{6}+\mathrm{R}_{8}\right)\right]}{\left[1+\mathrm{sR}_{7}\left(\frac{\mathrm{C}_{12} \times \mathrm{C}_{11}}{\mathrm{C}_{12}+\mathrm{C}_{11}}\right)\right] \times\left(1+\mathrm{sR}_{8} \mathrm{C}_{10}\right)}$

As known, transconductance amplifier has high impedance (current source) output, therefore, consider should be taken when loading the E/A output. It may exceed its source/sink output current capability, so that the amplifier will not be able to swing its output voltage over the necessary range.

The compensation network has three poles and two zeros and they are expressed as follows:
$\mathrm{F}_{\mathrm{P} 1}=0$
$\mathrm{F}_{\mathrm{P} 2}=\frac{1}{2 \pi \times \mathrm{R}_{8} \times \mathrm{C}_{10}}$
$F_{P 3}=\frac{1}{2 \pi \times R_{7} \times\left(\frac{C_{12} \times C_{11}}{C_{12}+C_{11}}\right)} \cong \frac{1}{2 \pi \times R_{7} \times C_{12}}$
$F_{Z 1}=\frac{1}{2 \pi \times R_{7} \times C_{11}}$
$F_{z 2}=\frac{1}{2 \pi \times C_{10} \times\left(R_{6}+R_{8}\right)} \cong \frac{1}{2 \pi \times C_{10} \times R_{6}}$
Cross Over Frequency:
$\mathrm{Fo}_{\mathrm{o}}=\mathrm{R}_{7} \times \mathrm{C}_{10} \times \frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {osc }}} \times \frac{1}{2 \pi \times \mathrm{Lo}_{0} \times \mathrm{Co}}$
Where:
Vin = Maximum Input Voltage
Vosc = Oscillator Ramp Voltage
Lo = Output Inductor
Co = Total Output Capacitors
The stability requirement will be satisfied by placing the poles and zeros of the compensation network according to following design rules. The consideration has been taken to satisfy condition (14) regarding transconductance error amplifier.

1) Select the crossover frequency:

Fo $<$ FESR and Fo $\leq(1 / 10 \sim 1 / 6) \times$ fs
2) Select R_{7}, so that $R_{7} \gg \frac{2}{g m}$
3) Place first zero before LC's resonant frequency pole.
$\mathrm{F}_{\mathrm{z1}} \cong 75 \%$ FLc
$\mathrm{C}_{11}=\frac{1}{2 \pi \times \mathrm{F}_{\mathrm{Z} 1} \times \mathrm{R}_{7}}$
4) Place third pole at the half of the switching frequency.
$F_{P 3}=\frac{f_{S}}{2}$
$\mathrm{C}_{12}=\frac{1}{2 \pi \times \mathrm{R}_{7} \times \mathrm{FP}_{\mathrm{P}}}$
$\mathrm{C}_{12}>50 \mathrm{pF}$
If not, change R7 selection.
5) Place R_{7} in (15) and calculate C_{10} :

$$
\mathrm{C}_{10} \leq \frac{2 \pi \times \mathrm{Lo} \times \mathrm{Fo} \times \mathrm{Co}}{\mathrm{R}_{7}} \times \frac{\mathrm{V} \text { osc }}{\mathrm{V}_{\mathrm{IN}}}
$$

6) Place second pole at the ESR zero.
$\mathrm{F}_{\mathrm{P} 2}=\mathrm{F}_{\mathrm{ESR}}$
$\mathrm{R}_{8}=\frac{1}{2 \pi \times \mathrm{C}_{10} \times \mathrm{FP}_{2}}$
Check if $R_{8}>\frac{1}{g_{m}}$
If R_{8} is too small, increase R_{7} and start from step 2.
7) Place second zero around the resonant frequency. $\mathrm{F}_{\mathrm{z} 2}=\mathrm{F} \mathrm{LC}$

$$
\mathrm{R}_{6}=\frac{1}{2 \pi \times \mathrm{C}_{10} \times \mathrm{F}_{z 2}}-\mathrm{R}_{8}
$$

8) Use equation (1) to calculate R_{5}.

$$
R_{5}=\frac{V_{\text {REF }}}{V_{\text {OUT }}-V_{\text {REF }}} \times R_{6}
$$

These design rules will give a crossover frequency approximately one-tenth of the switching frequency. The higher the band width, the potentially faster the load transient speed. The gain margin will be large enough to provide high DC-regulation accuracy (typically -5dB to 12 dB). The phase margin should be greater than 45° for overall stability.

IC Quiescent Power Dissipation

Power dissipation for IC controller is a function of applied voltage, gate driver loads and switching frequency. The IC's maximum power dissipation occurs when the IC operating with single 12 V supply voltage ($\mathrm{Vcc}=12 \mathrm{~V}$ and $\mathrm{V} \mathrm{c} \cong 24 \mathrm{~V}$) at 400 KHz switching frequency and maximum gate loads.

Figures 9 and 10 show voltage vs. current, when the gate drivers loaded with $470 \mathrm{pF}, 1150 \mathrm{pF}$ and 1540 pF capacitors. The IC's power dissipation results to an excessive temperature rise. This should be considered when using APU3037A for such application.

Layout Consideration

The layout is very important when designing high frequency switching converters. Layout will affect noise pickup and can cause a good design to perform with less than expected results.

Start to place the power components, make all the connection in the top layer with wide, copper filled areas. The inductor, output capacitor and the MOSFET should be close to each other as possible. This helps to reduce the EMI radiated by the power traces due to the high switching currents through them. Place input capacitor directly to the drain of the high-side MOSFET, to reduce the ESR replace the single input capacitor with two parallel units. The feedback part of the system should be kept away from the inductor and other noise sources, and be placed close to the IC. In multilayer PCB use one layer as power ground plane and have a control circuit ground (analog ground), to which all signals are referenced. The goal is to localize the high current path to a separate loop that does not interfere with the more sensitive analog control function. These two grounds must be connected together on the PC board layout at a single point.

Figure 8 shows a suggested layout for the critical components, based on the schematic on page 14.

Figure 8 - Suggested layout. (Topside shown only)

Advanced Power Electronics Corp.

Figure 9 - Vcc vs. Icc

Figure 10 - Vc vs. Ic

Figure 11 - Output Voltage

Figure 12 - Output Frequency

Figure 13 - Maximum Duty Cycle

Advanced Power
Electronics Corp.
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 14 - Output Voltage

Figure 16 - Transconductance

Figure 15 - Output Frequency

Figure 17 - Rise Time and Fall Time

Advanced Power
 Electronics Corp.

TYPICAL APPLICATION

Single Supply 5V Input

Figure 18 - Typical application of APU3037 in an on-board DC-DC converter using a single 5 V supply.

Advanced Power
Electronics Corp.

TYPICAL APPLICATION

Dual Supply, 5V Bus and 12V Bias Input

Figure 19 - Typical application of APU3037 or APU3037A in an on-board DC-DC converter providing the Core, GTL+, and Clock supplies for the Pentium II microprocessor.

Advanced Power Electronics Corp.

TYPICAL APPLICATION

1.8 V to $7.5 \mathrm{~V} / 0.5 \mathrm{~A}$ Boost Converter

Figure 20 - Typical application of APU3037 as a boost converter.

Advanced Power
Electronics Corp.

DEMO-BOARD APPLICATION

5 V or 12 V to 3.3 V @ 10A

Figure 21 - Demo-board application of APU3037.

Application Parts List

Ref Desig	Description	Value	Qty	Part\#	Manuf
Q1	MOSFET	$30 \mathrm{~V}, 12 \mathrm{~m} \Omega, 45 \mathrm{~A}$	1	AP60T03GH	APEC
Q2	MOSFET	$30 \mathrm{~V}, 12 \mathrm{~m} \Omega, 45 \mathrm{~A}$	1	AP60T03GH	APEC
U1	Controller	Synchronos PWM	1	APU3037	APEC
D1, D2, D4	Dide	Fast Switching	3	LL4148	
L1	Inductor	$1 \mu \mathrm{H}, 10 \mathrm{~A}$	1	7445601	WE
L2	Inductor	$3.2 \mu \mathrm{H}, 12 \mathrm{~A}$	1	7443550320	WE
C1	Capacitor, Tantalum	$33 \mu \mathrm{~F}, 16 \mathrm{~V}$	1	ECS-T1CD336R	
C2A, C2B	Capacitor, Poscap	$47 \mu \mathrm{~F}, 16 \mathrm{~V}, 70 \mathrm{~m} \Omega$	2	$16 T P B 47 \mathrm{M}$	
C9B, C9C	Capacitor, Poscap	$150 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 40 \mathrm{~m} \Omega$	2	6 6TPC150M	
C5, C6	Capacitor, Ceramic	$0.1 \mu \mathrm{~F}, \mathrm{Y} 5 \mathrm{~V}, 25 \mathrm{~V}$	2	ECJ-2VF1E104Z	
C3	Capacitor, Ceramic	$1 \mu \mathrm{~F}, \mathrm{X7R}, 25 \mathrm{~V}$	1	ECJ-3YB1E105K	
C4	Capacitor, Ceramic	2200 pF, X7R, 50 V	1	ECJ-2VB1H222K	
C7	Capacitor, Ceramic	470 pF, X7R	1	ECJ-2VB2D471K	
C8, C13, C19	Capacitor, Ceramic	$1 \mu \mathrm{~F}, \mathrm{Y5V}, 16 \mathrm{~V}$	3	ECJ-2VF1C105Z	
R3	Resistor	$20 \mathrm{~K}, 5 \%$	1		
R4	Resistor	$4.7 \Omega, 5 \%$	1		
R5	Resistor	$1 \mathrm{~K}, 1 \%$	1		
R6	Resistor	$1.65 \mathrm{~K}, 1 \%$	1		

DEMO-BOARD WAVEFORMS

Figure 22 - Efficiency for APU3037 Evaluation Board.

Figure 24 - Shutdown the output by pulling down the soft-start.

Tek Stop: $1.00 \mathrm{MS} / \mathrm{s}$
$\left.T^{7 \text { Acqs }} \quad\right\}$

Figure 26 - Transient response @ lout = 0 to 2A.

Tek stopa Single Seq $10.0 \mathrm{kS} / \mathrm{s}$

Figure 23 - Start-up time @ lout=5A.

Figure $25-3.3 \mathrm{~V}$ output voltage ripple @ lout=5A.

Figure 27 - Transient response @ lout = 0 to 4A.

