

Fast IGBT in NPT-technology

- 75% lower *E*_{off} compared to previous generation combined with low conduction losses
- Short circuit withstand time 10 μs
- Designed for:
 - Motor controls
 - Inverter
- NPT-Technology for 600V applications offers:
 - very tight parameter distribution
 - high ruggedness, temperature stable behaviour
- parallel switching capability
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC² for target applications
- Complete product spectrum and PSpice Models: <u>http://www.infineon.com/igbt/</u>

Туре	V _{CE}	I _c	V _{CE(sat)150°C}	Tj	Marking	Package
SGP06N60	600V	6A	2.3V	150°C	G06N60	PG-TO-220-3-1
SGD06N60	600V	6A	2.3V	150°C	G06N60	PG-TO-252-3-11

PG-TO-252-3-1 (D-PAK) (TO-252AA) PG-TO-220-3-1 (TO-220AB)

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current	I _C		А
$T_{\rm C}$ = 25°C		12	
$T_{\rm C}$ = 100°C		6.9	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	24	
Turn off safe operating area	-	24	
$V_{CE} \le 600 V, \ T_j \le 150^{\circ} C$			
Gate-emitter voltage	V _{GE}	±20	V
Avalanche energy, single pulse	E _{AS}	34	mJ
$I_{\rm C}$ = 6 A, $V_{\rm CC}$ = 50 V, $R_{\rm GE}$ = 25 Ω ,			
start at $T_j = 25^{\circ}C$			
Short circuit withstand time ¹⁾	t _{sc}	10	μs
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 600$ V, $T_{\rm j} \le 150^{\circ}$ C			
Power dissipation	P _{tot}	68	W
$T_{\rm C}$ = 25°C			
Operating junction and storage temperature	$T_{\rm j}$, $T_{\rm stg}$	-55+150	°C
Soldering temperature, PG-TO-252: (reflow soldering, MSL1) Others: wavesoldering, 1.6mm (0.063 in.) from case for 10s	T _s	260 260	

² J-STD-020 and JESD-022

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

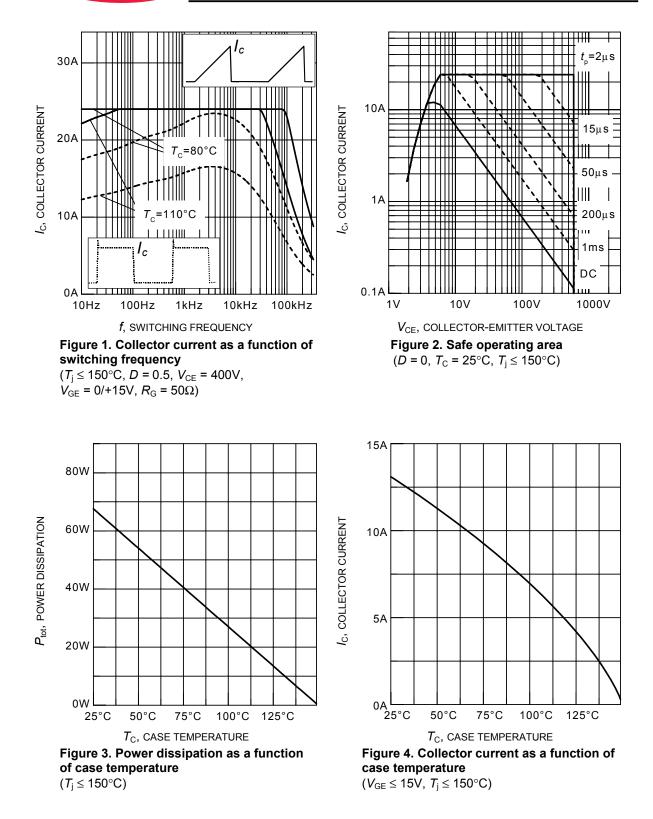
Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		1.85	K/W
junction – case				
Thermal resistance,	R _{thJA}	PG-TO-220-3-1	62	
junction – ambient				
SMD version, device on PCB ¹⁾	R _{thJA}	PG-TO-252-3-1	50	

Electrical Characteristic, at T_i = 25 °C, unless otherwise specified

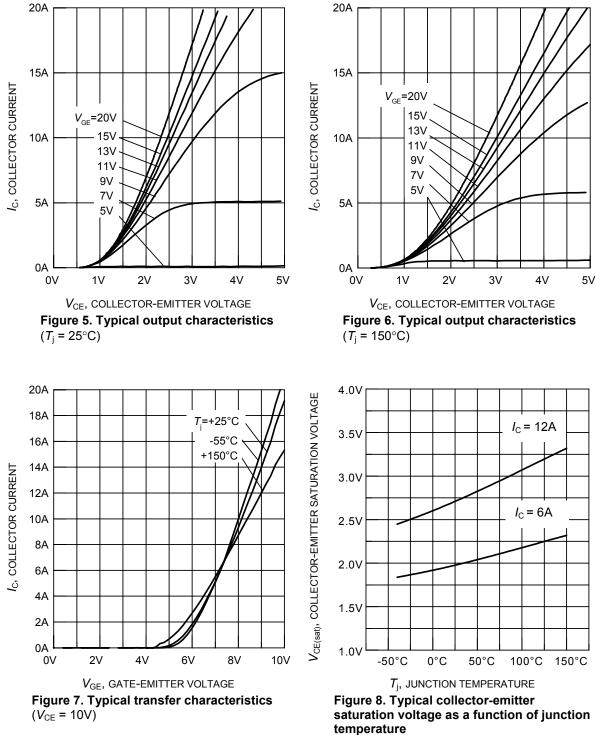
Parameter	Symbol	Conditions	Value	Unit		
Farameter	Symbol	Conditions	min.	Тур.	max.	onne
Static Characteristic	•	•			•	
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE}$ =0V, $I_{\rm C}$ =500 μ A	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE}$ = 15V, $I_{\rm C}$ =6A				
		<i>T</i> _j =25°C	1.7	2.0	2.4	
		<i>T</i> _j =150°C	-	2.3	2.8	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C} = 250 \mu {\rm A}, V_{\rm CE} = V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	$V_{\rm CE}$ =600V, $V_{\rm GE}$ =0V				μA
		<i>T</i> _i =25°C	-	-	20	
		<i>T</i> _j =150°C	-	-	700	
Gate-emitter leakage current	I _{GES}	$V_{CE}=0V, V_{GE}=20V$	-	-	100	nA
Transconductance	g _{fs}	V _{CE} =20V, <i>I</i> _C =6A	-	4.2	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	350	420	pF
Output capacitance	Coss	V _{GE} =0V,	-	38	46	
Reverse transfer capacitance	Crss	f=1MHz	-	23	28	
Gate charge	Q _{Gate}	V _{CC} =480V, <i>I</i> _C =6A	-	32	42	nC
		V _{GE} =15V				
Internal emitter inductance	LE		-	7	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ²⁾	I _{C(SC)}	V_{GE} =15V, t_{SC} ≤10µs V_{CC} ≤600V, T_{j} ≤150°C	-	60	-	A

 ¹⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for collector connection. PCB is vertical without blown air.
²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

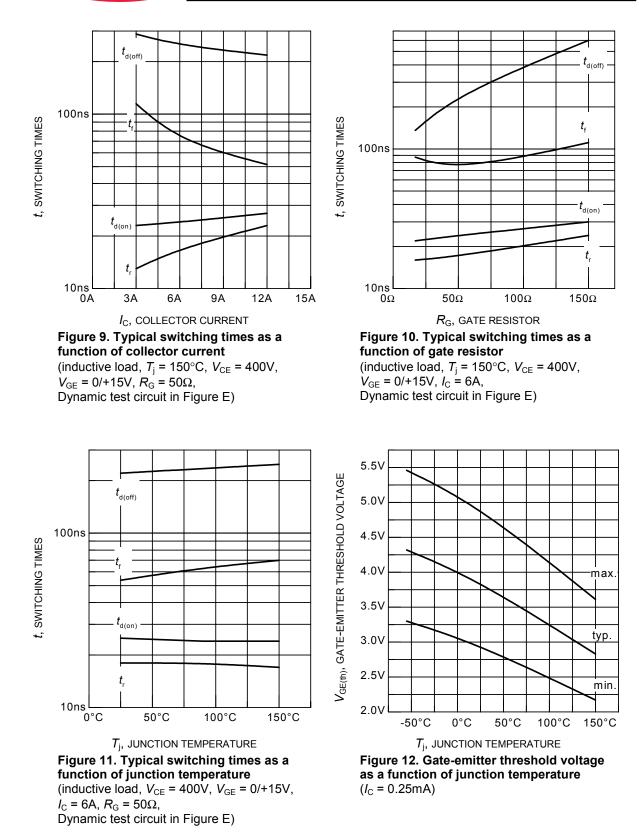
Switching Characteristic, Inductive Load, at T_i=25 °C


Parameter	Symbol	Conditions	Value			11
	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic		·				
Turn-on delay time	t _{d(on)}	$T_j=25^{\circ}C,$	-	25	30	ns
Rise time	t _r	V _{CC} =400V,I _C =6A, V _{GE} =0/15V,	-	18	22	
Turn-off delay time	$t_{d(off)}$	$R_{\rm G}$ =50 Ω ,	-	220	264	
Fall time	t _f	$L_{\sigma}^{(1)} = 180 \text{ nH},$	-	54	65	
Turn-on energy	Eon	$C_{\sigma}^{(1)}$ =250pF Energy losses include	-	0.110	0.127	mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.105	0.137	1
Total switching energy	E _{ts}	reverse recovery.	-	0.215	0.263	

Switching Characteristic, Inductive Load, at T_i=150 °C


Parameter	Symbol	Conditions	Value			Unit
	Symbol	Conditions	min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	<i>T</i> _j =150°C	-	24	29	ns
Rise time	t _r	V _{CC} =400V, <i>I</i> _C =6A, V _{GE} =0/15V,	-	17	20	
Turn-off delay time	$t_{d(off)}$	$R_{\rm c}=50\Omega$.	-	248	298	
Fall time	t _f	$L_{\sigma_{1}}^{(1)} = 180 \text{ nH},$	-	70	84	
Turn-on energy	Eon	$C_{\sigma}^{(1)} = 250 \text{ pF}$ Energy losses include	-	0.167	0.192	mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.153	0.199	
Total switching energy	E _{ts}	reverse recovery.	-	0.320	0.391	

 $^{1)}$ Leakage inductance L $_{\sigma}$ and Stray capacity C $_{\sigma}$ due to dynamic test circuit in Figure E.



 $(V_{\rm GE} = 15V)$

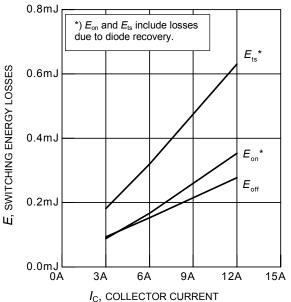


Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $R_G = 50\Omega$, Dynamic test circuit in Figure E)

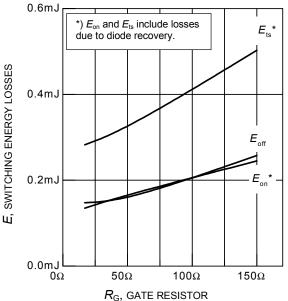
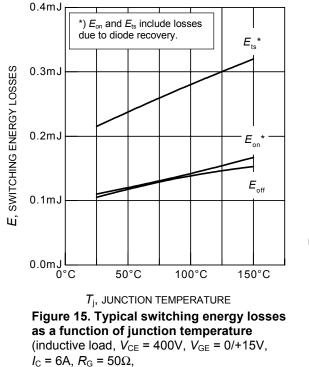
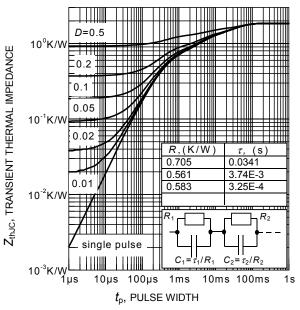
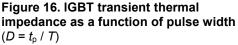
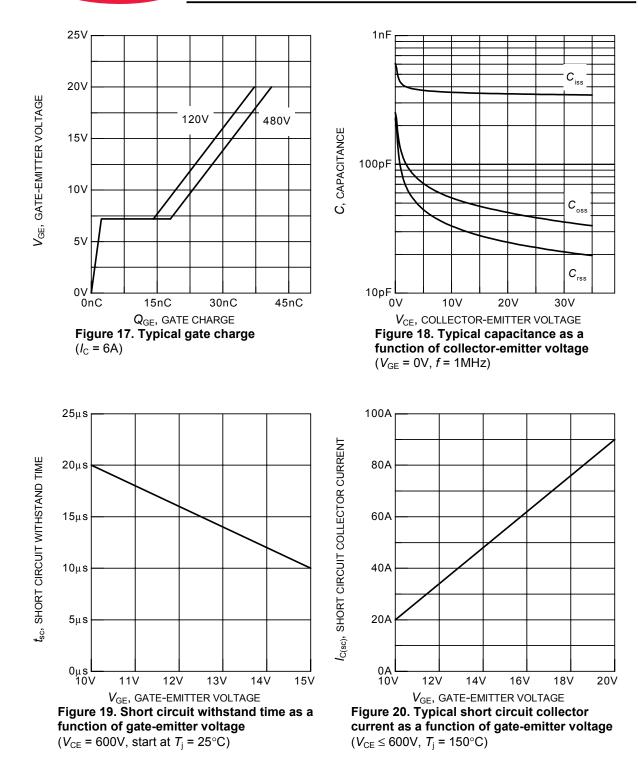
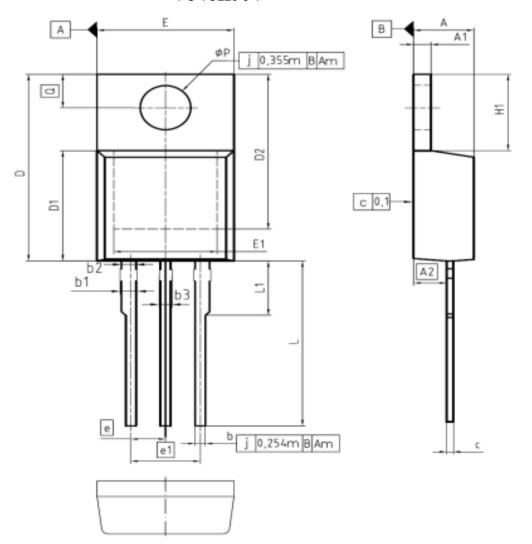
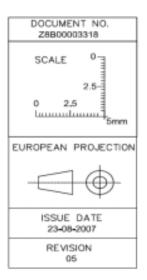





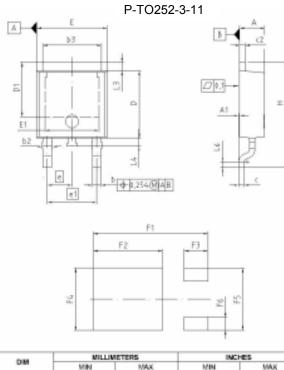
Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $I_C = 6$ A, Dynamic test circuit in Figure E)



Dynamic test circuit in Figure E)







DIM	MILLIN	IETERS .	INC	4ES
DIM	MIN	MAX	MIN	MAX
A	4.30	4.57	0.169	0.180
A1	1.17	1.40	0.046	0.055
A2	2.15	2.72	0,085	0.107
ь	0.65	0.86	0,026	0.034
ь1	0.95	1.40	0.037	0.055
ь2	0.95	1.15	0,037	0.045
ьз	0,65	1.15	0,026	0,045
с	0.33	0.60	0.013	0.024
D	14.81	15.95	0.583	0.628
D1	8.51	9,45	0,335	0.372
D2	12.19	13.10	0.480	0.516
E	9.70	10.36	0.382	0.408
E1	6,50	8,60	0,256	0,339
e	2	.54	0.100	
e1	5	.08	0.200	
N		3		3
H1	5.90	6.90	0.232	0.272
L	13.00	14.00	0.512	0.551
L1	-	4.80	-	0.189
øP	3.60	3.89	0.142	0.153
0	2.60	3.00	0.102	0.118

DM	MILLIM	ETERS	INCHES		
Dilli	MIN	MAX	MIN 0.088 0.000 0.025 0.025 0.018 0.018 0.018 0.235 0.198 0.252 0.198 0.252 0.198 0.252 0.198 0.253 0.019 0.019 0.019 0.010 0.018 0.008 0.08	MAX	
A	2.184	2.388	D.068	0.094	
A1	0.000	0.150	0.000	0.006	
ь	0.835	0.889	0.025	0.035	
b2	0.650	1.150	0.025	0.045	
b3	5.004	5.500	0.197	0.217	
	0,480	0.580	0.018	0.023	
62	0,490	0.960	0.018	0.059	
D	5.969	6.223	0.235	0.245	
D1	5.020	5.320	D.198	0.209	
E	6.400	6.734	0.252	0.265	
E1	4.900	5.100	D.193	0.201	
	2.2	86	0.090		
e1	4,5	72	0.1	0.180	
N	5	;	3		
н	9,400	10.094	0.370	0.397	
L3	0.900	1,118	0.035	0.044	
L4	0.850	1,016	0.025	0.040	
LG	0.510	0.686	0.020	0.027	
F1	10.500	10.700	0.413	0,421	
F2	6.300	6.500	0.248	0.255	
F3	2.900	2.300	0.063	190.0	
F4	5.700	5.900	0.224	0.232	
FS .	5,660	5.860	0.222	0.231	
F6	1.100	1.300	D.D43	0.051	

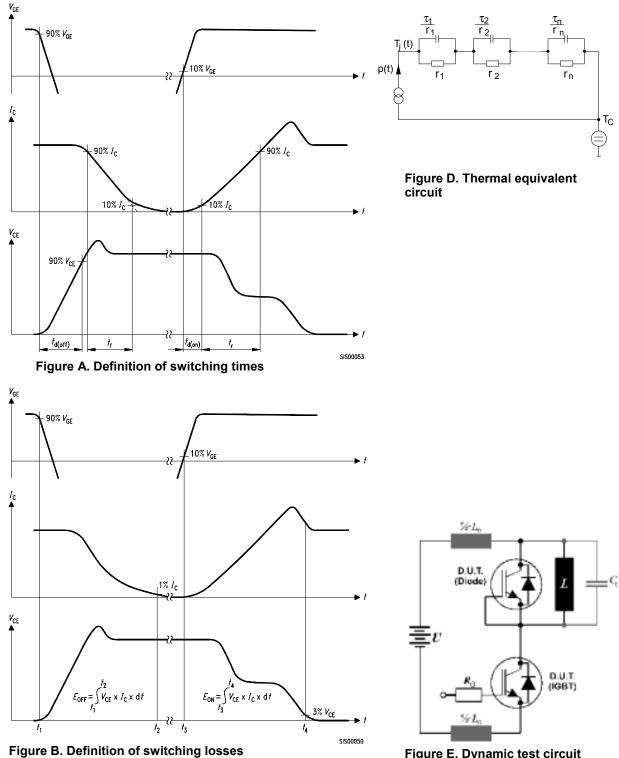


Figure E. Dynamic test circuit Leakage inductance L_{σ} =180nH and Stray capacity C_{σ} =250pF.

Edition 2006-01

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 9/12/07. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.