

ADC-228 8-Bit, 20MHz, Complete Flash A/D Converter

FEATURES

- · 8-Bit flash A/D converter
- 20MHz sampling rate
- · Complete support circuitry
- Low power, 1.5W
- 7MHz full power bandwidth
- · Sample-hold not required
- · Three-state outputs
- MIL-STD-883 versions

GENERAL DESCRIPTION

The ADC-228 combines analog front-end circuitry and a flash A/D converter to digitize high-speed analog signals at a rate of 20 million samples per second. The ADC-228 contains an 8-bit, 20MHz, flash A/D, a wideband analog input buffer, a precision voltage reference, temperature compensation circuitry, reference trims, and a three-state output buffer in a 24-pin package.

The ADC-228 offers significant savings by combining all of the circuitry in a single package. Valuable board real estate is saved, and design time and manufacturing costs are reduced.

The ADC-228 is housed in a 24-pin ceramic DDIP package and is available in the commercial, 0 to +70°C, or military, -55 to +125°C, temperature ranges. A MIL-STD-883 version is also available. Operation is from ±15V and +5V power supplies.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+5V SUPPLY	24	BIT 8 (LSB)
2	GROUND	23	BIT 7
3	+5V REFERENCE OUT	22	BIT 6
4	GROUND	21	BIT 5
5	ANALOG INPUT	20	NO CONNECTION
6	GROUND	19	+15V SUPPLY
7	GROUND	18	CLOCK INPUT
8	NLINV	17	BIT 4
9	NMINV	16	BIT 3
10	-15V SUPPLY	15	BIT 2
11	CS1	14	BIT 1 (MSB)
12	CS1	13	NO CONNECTION

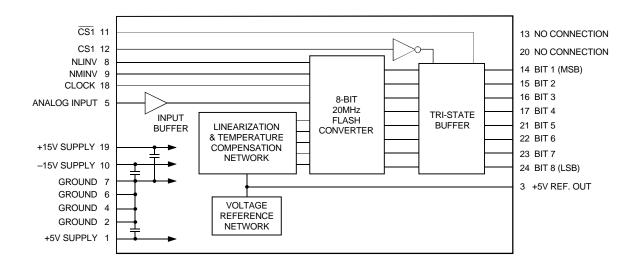


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

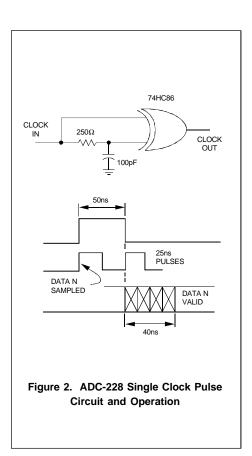
PARAMETER	LIMITS
Power Supply Voltage, Pin 19 Pin 10 Digital Inputs, Pins 8,9,11,12,18 Analog Input, Pin 5 Digital Outputs Lead Temp. (10 seconds)	Pin 1 -0.5 to +7V -0.3 to +18V +0.3 to -18V -0.5 to +5.5V -6 to +7.5V -0.5 to +5.5V (short circuit protected to ground) +300°C

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range with 20MHz clock and $\pm 15V$ and $\pm 5V$ power supply voltages, unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS	
Single-Ended, Non-Isolated Input Range, dc-20MHz Input Resistance Input Capacitance	0 2.45 —	 2.5 5	+5.0 2.55 10	Volts kΩ pF	
DIGITAL INPUTS					
Logic Levels Logic 1 Logic 0 Logic Loading	+2.0	_ _	— +0.8	Volts Volts	
Logic 1 Logic 0 Clock Pulse Widths	_ _	_ _	+160 -0.5	μA mA	
"High" "Low"	25 19	_ _	_ _	ns ns	
DIGITAL OUTPUTS					
Coding Resolution Logic Levels	Straight bin., comp. bin., two's comp., comp. two's comp. 8 bits				
Logic Levels Logic 1 Logic 0 Logic Loading	+2.4	_ _ _	— +0.4	Volts Volts	
Logic 1 Logic 0 Output Data Valid Delay	_ _	_ _	-1 +1	mA mA	
From Rising Edge Output Hold Time	- 5	30 —	40 —	ns ns	
PERFORMANCE					
Sampling Rate ① Differential Linearity ②	20	_	_	MHz	
Code Transitions Code Centers Integral Linearity, +25°C	_ _	±0.5 ±0.25	±0.75 ±0.5	LSB LSB	
End-point Best-fit Line Over Temperature End-point	_ _ _	±0.5 ±0.35 —	±0.75 ±0.5 ±1	LSB LSB LSB	
Best-fit Line Zero-Scale Offset Code "0" to "1" Transition	_	_	±1	LSB	
+25°C -55 to +125°C Gain error	_ _ _	±0.5 ±0.5	±0.5 ±1.5 ±1.5	LSB LSB LSB	
Full Scale Absolute Accuracy Differential Gain ③ Differential Phase ③	_ _ _	±0.5 2 1	±1.5 —	LSB % deg.	
Aperture Delay Aperture Jitter No Missing Codes		8 50		ns ps	
Power Supply Rejection					

	1	1	1	1
DYNAMIC PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Total Harm. Distortion, -0.5dB				
DC to 2.5 MHz	_	-55	-53	dB
2.5 MHz to 5 MHz	_	-50	-48	dB
5 MHz to 10 MHz	_	-39	-36	dB
Signal-to-Noise Ratio				
and Distortion, -0.5dB				
DC to 2.5 MHz	44	49	_	dB
2.5 MHz to 5 MHz	43	46	_	dB
5 MHz to 10 MHz	35	38	_	dB
Signal-to-Noise Ratio				
w/o Distortion, -0.5 dB				
DC to 2.5 MHz	45	48	_	dB
2.5 MHz to 5 MHz	45	48	_	dB
5 MHz to 10 MHz	42	45	_	dB
Effective Bits, -0.5dB				
DC to 2.5 MHz	7.1	7.75	_	Bits
2.5 MHz to 5 MHz	6.9	7.4	_	Bits
5 MHz to 10 MHz	5.6	6.1	_	Bits
Input Bandwidth				
Full Power	7	_	_	MHz
Small Signal (-20dB)	40	_	_	MHz
POWER SUPPLY			ı	
Power Supply Range				
+15V Supply	+11	+15	+15.75	Volts
–15V Supply	-11	-15	-15.75	Volts
+5V Supply	+4.75	+5	+5.25	Volts
Power Supply Current			. 0.20	rono
+15V Supply	_	_	+30	mA
–15V Supply	_	_	-10	mA
+5V Supply	_	_	+230	mA
Power Dissipation			1200	1117 (
±12V, +5V Nominal	_	1.4	1.65	Watts
Over full supply range	_	1.6	1.85	Watts
±15V, +5V Nominal	_	1.5	1.75	Watts
PHYSICAL/ENVIRONMENTAL				
Operating Temp. Range, Case				
ADC-228MC	0 to +70°C			
ADC-228MM, ADC-228/883	-55 to +125°C			
Storage Temp. Range	-55 to +125 C -65 to +150°C			
Package Type				
Weight	24-pin, ceramic DDIP			
weight	0.3 ounces (8.5 grams)			


Footnotes:

- $\ensuremath{\textcircled{1}}$ At full power input and chip selects enabled.
- ${\small @} \ \ \text{See Technical Note 3}.$
- $\ensuremath{\mathfrak{B}}$ For 10-step, 40 IRE NTSC ramp test.

TECHNICAL NOTES

- Rated performance requires using good high-frequency techniques. The analog and digital ground pins are connected to each other internally. Avoid ground related problems by connecting the grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass all the analog and digital supplies and the +5V REFERENCE (pin 3) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1μF ceramic capacitor.
- DATEL uses conservative definitions when specifying integral linearity (end-point) and differential linearity (code transition). The specifications using the less conservative definitions have also been provided as a comparative specification for products specified this way.
- Single conversions (one-shot mode) would require another clock edge to read out data. Users desiring to provide just a single clock pulse could use the circuit shown in Figure 2 to obtain the data.

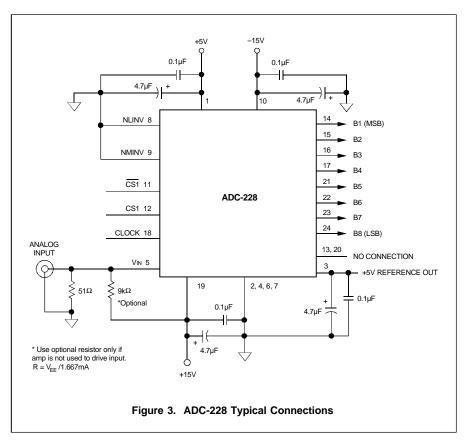
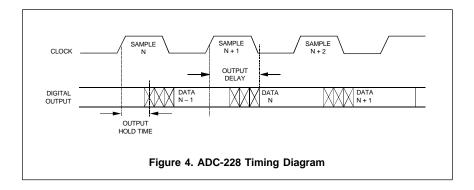


Table 1. ADC-228 Unipolar Output Coding

ANALOG INPUT	CODE	STRAIGHT BIN. NMINV = 0 NLINV = 0	COMP. BIN. NMINV = 1 NLINV = 1
+4.96V	+FS – 1 LSB	1111 1110	0000 0001
+3.75V	+ 3/4 FS	1100 0000	0011 1111
+2.50V	+ 1/2 FS	1000 0000	0111 1111
+1.25V	+ 1/4 FS	0100 0000	1011 1111
+0.02V	+ 1 LSB	0000 0001	1111 1110
0.00V	ZERO	0000 0000	1111 1111


Table 2. ADC-228 Bipolar Output Coding (Assumes analog input is externally offset)

ANALOG INPUT	CODE	TWO'S COMP. NMINV = 1 NLINV = 0	COMP. TWO'S COMP. NMINV = 0 NLINV = 1
+2.480V	+FS – 1 LSB	0111 1111	1000 0000
+1.250V	+1/2 FS	0100 0000	1011 1111
+0.020V	+1 LSB	0000 0001	1111 1110
+0.000V	ZERO	0000 0000	1111 1111
-1.250V	-1/2 FS	1100 0000	0011 1111
-2.480V	-FS + 1 LSB	1000 0001	0111 1110
-2.500V	-FS	1000 0000	0111 1111
			l

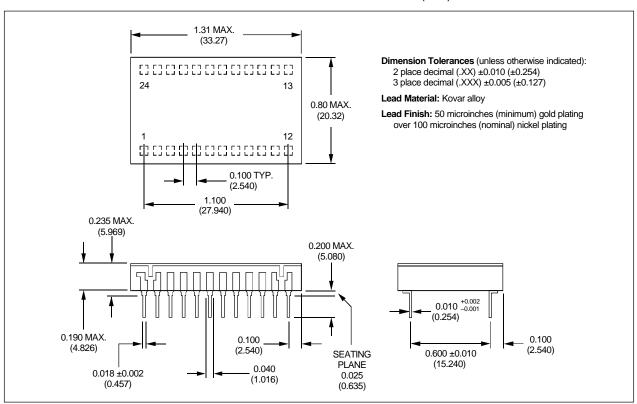


Table 3. Chip Select Truth Table

CS1 Pin 12	CS1 Pin 11	Bits 1-8
0	0 1	Three State Mode Three State Mode
1	0	Data Outputted Three State Mode
	ı	Triree State Mode

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL	TEMPERATURE RANGE	
ADC-228MC	0 to +70°C	
ADC-228MM	−55 to +125°C	
ADC-228/883	−55 to +125°C	

Receptacle for PC board mounting can be ordered through AMP Inc., part # 3-331272-8 (component lead socket), 24 required. Contact DATEL for 883 product specifications

DS-0211B 10/96

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356 Internet: www.datel.com E-mail:sales@datel.com Data Sheet Fax Back: (508) 261-2857 DATEL (UK) LTD. Tadley, England Tel: (01256)-880444

DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01

DATEL GmbH München, Germany Tel: 89-544334-0

DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025

DATEL makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. The DATEL logo is a registered DATEL, Inc. trademark.