18Mb QDRII SRAM Specification

165FBGA with Pb & Pb-Free (RoHS compliant)

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED

ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Document Title

512Kx36-bit,1Mx18-bit QDR™ II b4 SRAM

Revision History

<u>Rev. No.</u>	History				Draft Date	<u>Remark</u>
0.0	1. Initial documer	nt.			Oct. 17. 2002	Advance
0.1	1. Change the Bo 2. Correct the Ov		order. ershoot timing diagra	am.	Dec. 16, 2002	Preliminary
0.2	1. Change JTAG	Block diagram			Dec. 26, 2002	Preliminary
0.3	1. Add the speed	bin (-25)			Jan. 27, 2003	Preliminary
0.4	1. Correct the JT/ 2. Correct the AC		inition (delete the tKH K H	Max value)	Mar. 20, 2003	Preliminary
0.5	1. Change the Ma 2. Correct the 16				April. 4, 2003	Preliminary
0.6	 Add the power Update the DC Change the Ma 	current paramete	er (Icc and Isb).		June. 20, 2003	Preliminary
0.7	1. Change the IS	B1.			Oct. 20. 2003	Preliminary
	Speed Bin	From	То			
	-30	200	230			
	-25	180	210			
	-20	160	190			
	-16	140	170			
1.0	1. Final spec rele	ase			Oct. 31, 2003	Final
2.0	1. Delete the x8 0 2. Delete the 300				Nov. 28, 2003	Final
3.0	1. Add the Indust	rial temp. & Lead	Free Package		Nov. 10. 2004	Final
4.0	1. Add the 300MI	Hz speed bin			Mar. 29. 2006	Final
5.0	1. Change Vss/S	A to NC/SA in Pin	Configuration		Jul. 26 2006	Final

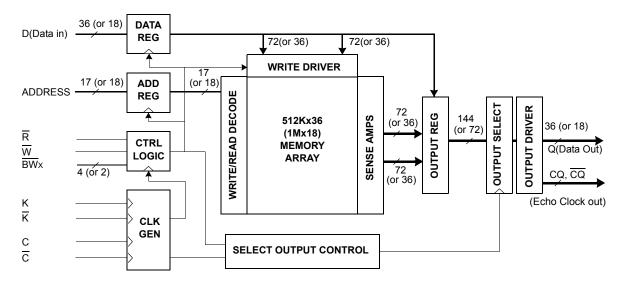
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

512Kx36-bit, 1Mx18-bit QDR™ II b4 SRAM

FEATURES

- 1.8V+0.1V/-0.1V Power Supply.
- · DLL circuitry for wide output data valid window and future frequency scaling.
- I/O Supply Voltage 1.5V+0.1V/-0.1V for 1.5V I/O, 1.8V+0.1V/-0.1V for 1.8V I/O.
- · Separate independent read and write data ports with concurrent read and write operation
- HSTL I/O
- Full data coherency, providing most current data.
- · Synchronous pipeline read with self timed late write.
- Registered address, control and data input/output.
- DDR (Double Data Rate) Interface on read and write ports.
- Fixed 4-bit burst for both read and write operation.
- · Clock-stop supports to reduce current.
- Two input clocks (K and \overline{K}) for accurate DDR timing at clock rising edges only.
- Two input clocks for output data (C and \overline{C}) to minimize clock-skew and flight-time mismatches.
- Two echo clocks (CQ and \overline{CQ}) to enhance output data traceability.
- · Single address bus.
- Byte write (x18, x36) function.
- Separate read/write control $pin(\overline{R} \text{ and } \overline{W})$
- Simple depth expansion with no data contention.
- Programmable output impedance.
- JTAG 1149.1 compatible test access port.

FUNCTIONAL BLOCK DIAGRAM


- 165FBGA(11x15 ball array) with body size of 13mmx15mm. & Lead Free
- Operating in commercial and industrial temperature range.

Organization	Part Number	Cycle Time	Access Time	Unit
	K7R163684B-E(F)C(I)30	3.3	0.45	ns
X36	K7R163684B-E(F)C(I)25	4.0	0.45	ns
7.50	K7R163684B-E(F)C(I)20	5.0	0.45	ns
	K7R163684B-E(F)C(I)16	6.0	0.50	ns
	K7R161884B-E(F)C(I)30	3.3	0.45	ns
X18	K7R161884B-E(F)C(I)25	4.0	0.45	ns
XIU	K7R161884B-E(F)C(I)20	5.0	0.45	ns
	K7R161884B-E(F)C(I)16	6.0	0.50	ns

* -E(F)C(I)

E(F) [Package type] : E-Pb Free, F-Pb

C(I) [Operating Temperature] : C-Commercial, I-Industrial

Notes: 1. Numbers in () are for x18 device

QDR SRAM and Quad Data Rate comprise a new family of products developed by Cypress, Hitachi, IDT, Micron, NEC and Samsung technology.

512Kx36 & 1Mx18 QDR[™] II b4 SRAM

PIN CONFIGURATIONS(TOP VIEW) K7R163684B(512Kx36) 1 7 2 3 4 5 6 8 9 10 11 R CQ W K BW₁ BW₂ Α NC/SA* NC/SA* NC/SA* NC/SA* CQ в Q27 Q18 D18 SA BW3 Κ **BW**0 SA D17 Q17 Q8 С D27 Q28 D19 Vss SA NC SA Vss D16 Q7 D8 D D28 D20 Q19 Vss Vss Vss Vss Vss Q16 D15 D7 Е Q29 D29 Q20 Vss Vss Vss Vddq Q15 D6 Q6 VDDQ F Q30 Q21 D21 D14 Q14 Q5 Vddq Vdd Vss Vdd Vddq Vddq G D30 D22 Q22 Vdd Vss Vdd Vddq Q13 D13 D5 Doff Vdd н VREF VDDQ Vddq Vdd Vss Vddq VDDQ VREF ZQ J D31 Q31 D23 Vddq Vdd Vss Vdd Vddq D12 Q4 D4 κ Q32 D32 Q23 Vddq Vdd Vss Vdd Vddq Q12 D3 Q3 L Q33 Q24 D24 Vddq Vss Vss Vss Vddq D11 Q11 Q2 М D33 Q34 D25 Vss Vss Vss D10 Q1 D2 Vss Vss Ν D34 Q25 SA SA D9 D1 D26 Vss SA Vss Q10 Р С Q35 D35 Q26 SA SA SA D0 Q0 SA Q9 C R TDO TCK SA SA SA SA SA SA TMS TDI

Notes: 1. * Checked No Connect (NC) pins are reserved for higher density address, i.e. 9A for 32Mb, 3A for 72Mb, 10A for 144Mb and 2A for 288Mb. 2. BWo controls write to D0:D8, BW1 controls write to D9:D17, BW2 controls write to D18:D26 and BW3 controls write to D27:D35.

PIN NAME

SYMBOL	PIN NUMBERS	DESCRIPTION	NOTE
К, <u>К</u>	6B, 6A	Input Clock	
C, C	6P, 6R	Input Clock for Output Data	1
CQ, CQ	11A, 1A	Output Echo Clock	
Doff	1H	DLL Disable when low	
SA	4B,8B,5C,7C,5N-7N,4P,5P,7P,8P,3R-5R,7R-9R	Address Inputs	
D0-35	10P,11N,11M,10K,11J,11G,10E,11D,11C,10N,9M,9L 9J,10G,9F,10D,9C,9B,3B,3C,2D,3F,2G,3J,3L,3M,2N 1C,1D,2E,1G,1J,2K,1M,1N,2P	Data Inputs	
Q0-35	11P,10M,11L,11K,10J,11F,11E,10C,11B,9P,9N,10L 9K,9G,10F,9E,9D,10B,2B,3D,3E,2F,3G,3K,2L,3N 3P,1B,2C,1E,1F,2J,1K,1L,2M,1P	Data Outputs	
W	4A	Write Control Pin, active when low	
R	8A	Read Control Pin, active when low	
BW0, BW1,BW2, BW3	7B,7A,5A,5B	Block Write Control Pin, active when low	
Vref	2H,10H	Input Reference Voltage	
ZQ	11H	Output Driver Impedance Control Input	2
Vdd	5F,7F,5G,7G,5H,7H,5J,7J,5K,7K	Power Supply (1.8 V)	
Vddq	4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L	Output Power Supply (1.5V or 1.8V)	
Vss	4C,8C,4D-8D,5E-7E,6F,6G,6H,6J,6K,5L-7L,4M, 8M,4N,8N	Ground	
TMS	10R	JTAG Test Mode Select	
TDI	11R	JTAG Test Data Input	
TCK	2R	JTAG Test Clock	
TDO	1R	JTAG Test Data Output	
NC	2A,3A,10A,6C,9A	No Connect	3

Notes: 1. C, \overline{C} , K or \overline{K} cannot be set to VREF voltage.

2. When ZQ pin is directly connected to Voo output impedance is set to minimum value and it cannot be connected to ground or left unconnected. 3. Not connected to chip pad internally.

	1	2	3	4	5	6	7	8	9	10	11
Α	Q	NC/SA*	NC/SA*	W	BW ₁	ĸ	NC	R	SA	NC/SA*	CQ
В	NC	Q9	D9	SA	NC	К	BW ₀	SA	NC	NC	Q8
с	NC	NC	D10	Vss	SA	NC	SA	Vss	NC	Q7	D8
D	NC	D11	Q10	Vss	Vss	Vss	Vss	Vss	NC	NC	D7
Е	NC	NC	Q11	Vddq	Vss	Vss	Vss	VDDQ	NC	D6	Q6
F	NC	Q12	D12	Vddq	Vdd	Vss	Vdd	VDDQ	NC	NC	Q5
G	NC	D13	Q13	Vddq	Vdd	Vss	Vdd	VDDQ	NC	NC	D5
н	Doff	VREF	VDDQ	Vddq	Vdd	Vss	Vdd	VDDQ	Vddq	VREF	ZQ
J	NC	NC	D14	Vddq	Vdd	Vss	Vdd	Vddq	NC	Q4	D4
к	NC	NC	Q14	Vddq	Vdd	Vss	Vdd	VDDQ	NC	D3	Q3
L	NC	Q15	D15	Vddq	Vss	Vss	Vss	Vddq	NC	NC	Q2
м	NC	NC	D16	Vss	Vss	Vss	Vss	Vss	NC	Q1	D2
Ν	NC	D17	Q16	Vss	SA	SA	SA	Vss	NC	NC	D1
Р	NC	NC	Q17	SA	SA	С	SA	SA	NC	D0	Q0
R	TDO	тск	SA	SA	SA	C	SA	SA	SA	TMS	TDI

PIN CONFIGURATIONS(TOP VIEW) K7R161884B(1Mx18)

Notes: 1. * Checked No Connect (NC) pins are reserved for higher density address, i.e. 3A for 36Mb, 10A for 72Mb and 2A for 144Mb. 2. BWo controls write to D0:D8 and BW1 controls write to D9:D17.

PIN NAME

SYMBOL	PIN NUMBERS	DESCRIPTION	NOTE
K, K	6B, 6A	Input Clock	
C, <u>C</u>	6P, 6R	Input Clock for Output Data	1
CQ, CQ	11A, 1A	Output Echo Clock	
Doff	1H	DLL Disable when low	
SA	9A,4B,8B,5C,7C,5N-7N,4P,5P,7P,8P,3R-5R,7R-9R	Address Inputs	
D0-17	10P,11N,11M,10K,11J,11G,10E,11D,11C,3B,3C,2D 3F,2G,3J,3L,3M,2N	Data Inputs	
Q0-17	11P,10M,11L,11K,10J,11F,11E,10C,11B,2B,3D,3E 2F,3G,3K,2L,3N,3P	Data Outputs	
W	4A	Write Control Pin, active when low	
R	8A	Read Control Pin, active when low	
BW0, BW1	7B, 5A	Block Write Control Pin, active when low	
VREF	2H,10H	Input Reference Voltage	
ZQ	11H	Output Driver Impedance Control Input	2
Vdd	5F,7F,5G,7G,5H,7H,5J,7J,5K,7K	Power Supply (1.8 V)	
Vddq	4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L	Output Power Supply (1.5V or 1.8V)	
Vss	4C,8C,4D-8D,5E-7E,6F,6G,6H,6J,6K,5L-7L,4M-8M,4N,8N	Ground	
TMS	10R	JTAG Test Mode Select	
TDI	11R	JTAG Test Data Input	
TCK	2R	JTAG Test Clock	
TDO	1R	JTAG Test Data Output	
NC	2A,3A,10A,7A,1B,5B,9B,10B,1C,2C,6C,9C,1D,9D,10D,1E,2E,9E, 1F,9F,10F,1G,9G,10G,1J,2J,9J,1K,2K,9K,1L,9L,10L,1M 2M,9M,1N,9N,10N,1P,2P,9P	No Connect	3

Notes: 1. C, \overline{C} , K or \overline{K} cannot be set to VREF voltage.

2. When ZQ pin is directly connected to VDD output impedance is set to minimum value and it cannot be connected to ground or left unconnected. 3. Not connected to chip pad internally.

GENERAL DESCRIPTION

The K7R163684B and K7R161884B are 18,874,368-bits QDR (Quad Data Rate) Synchronous Pipelined Burst SRAMs. They are organized as 524.288 words by 36bits for K7R163684B and 1.048.576 words by 18 bits for K7R161884B.

The QDR operation is possible by supporting DDR read and write operations through separate data output and input ports with the same cycle. Memory bandwidth is maximized as data can be transferred into SRAM on every rising edge of K and \overline{K} , and transferred out of SRAM on every rising edge of C and \overline{C} . And totally independent read and write ports eliminate the need for high speed bus turn around.

Address for read and write are latched on alternate rising edges of the input clock K. Data inputs, and all control signals are synchronized to the input clock (K or \overline{K}). Normally data outputs are synchronized to output clocks (C and \overline{C}), but when C and \overline{C} are tied high, the data outputs are synchronized to the input clocks (K and \overline{K}). Read data are referenced to echo clock (CQ or \overline{CQ}) outputs.

Common address bus is used to access address both for read and write operations.

The internal burst counter is fixed to 4-bit sequential for both read and write operations, requiring tow full clock bus cycles. Any request that attempts to interrupt a burst operation in progress is ignored. Synchronous pipeline read and late write enable high speed operations. Simple depth expansion is accomplished by using \overline{R} and \overline{W} for port selection. Byte write operation is supported with $\overline{BW_0}$ and $\overline{BW_1}$ ($\overline{BW_2}$ and $\overline{BW_3}$) pins. Nibble write operation is supported with $\overline{NW_0}$ and $\overline{NW_1}$ pins for x8 device. IEEE 1149.1 serial boundary scan (JTAG) simplifies monitoring package pads attachment status with system.

The K7R163684B and K7R161884B are implemented with SAMSUNG's high performance 6T CMOS technology and is available in 165pin FBGA packages. Multiple power and ground pins minimize ground bounce.

READ OPERATIONS

Read cycles are initiated by activating \overline{R} at the rising edge of the positive input clock K. Address is presented and stored in the read address register synchronized with K clock.

For 4-bit burst DDR operation, it will access four 36-bit or 18-bit or 8-bit data words with each read command. The first pipelined data is transferred out of the device triggered by \overline{C} clock following next \overline{K} clock rising edge. Next burst data is triggered by the rising edge of following C clock rising edge. The process continues until all four data are transferred.

Continuous read operations are initiated with K clock rising edge. And pipelined data are transferred out of device on every rising edge of both C and \overline{C} clocks. In case C and \overline{C} tied to high, output data are triggered by K and \overline{K} instead of C and \overline{C} .

When the \overline{R} is disabled after a read operation, the K7R163684B and K7R161884B will first complete burst read operation before entering into deselect mode at the next K clock rising edge. Then output drivers disabled automatically to high impedance state.

ECHO CLOCK OPERATION

To assure the output traceability, the SRAM provides the output Echo clock, pair of compliment clock CQ and \overline{CQ} , which are synchronized with internal data output. Echo clocks run free during normal operation. The Echo clock is triggered by internal output clock signal, and transferred to external through same structures as output driver.

512Kx36 & 1Mx18 QDR[™] II b4 SRAM

WRITE OPERATIONS

Write cycles are initiated by activating \overline{W} at the rising edge of the positive input clock K. Address is presented and stored in the write address register synchronized with K clock.

For 4-bit burst DDR operation, it will write four 36-bit or 18-bit or 8-bit data words with each write command. The first "late" data is transferred and registered in to the device synchronous with next K clock rising edge. Next burst data is transferred and registered synchronous with following \overline{K} clock rising edge. The process continues until all four data are transferred and registered.

Continuous write operations are initiated with K rising edge. And "late writed" data is presented to the device on every rising edge of both K and \overline{K} clocks.

The device disregards input data presented on the same cycle \overline{W} disabled. When the \overline{W} is disabled after a read operation, the K7R163684B and K7R161884B will first complete burst read operation before entering into deselect mode at the next K clock rising edge.

The K7R163684B and K7R161884B support byte write operations. With activating $\overline{BW_0}$ or $\overline{BW_1}$ ($\overline{BW_2}$ or $\overline{BW_3}$) in write cycle, only one byte of input data is presented. In K7R161884B, $\overline{BW_0}$ controls write operation to D0:D8, $\overline{BW_1}$ controls write operation to D9:D17. And in K7R163684B $\overline{BW_2}$ controls write operation to D18:D26, $\overline{BW_3}$ controls write operation to D27:D35.

PROGRAMMABLE IMPEDANCE OUTPUT BUFFER OPERATION

The designer can program the SRAM's output buffer impedance by terminating the ZQ pin to Vss through a precision resistor (RQ). The value of RQ (within 15%) is five times the output impedance desired.

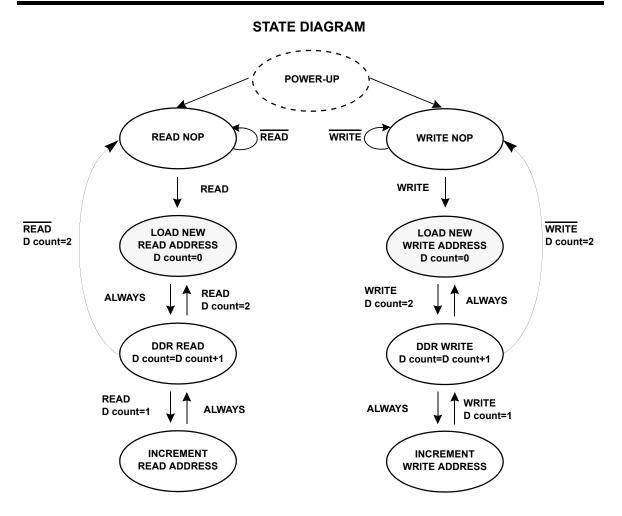
For example, 250Ω resistor will give an output impedance of 50Ω . Impedance updates occur early in cycles that do not activate the outputs, such as deselect cycles. In all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior in the SRAM.

There are no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs 1024 non-read cycles.

SINGLE CLOCK MODE

The K7R163684B and K7R161884B can be operated with the single clock pair K and K, instead of C or C for output clocks.
 To operate these devices in single clock mode, C and C must be tied high during power up and must be maintained high during operation.

After power up, this device can't change to or from single clock mode. System flight time and clock skew could not be compensated in this mode.


DEPTH EXPANSION

Separate input and output ports enables easy depth expansion. Each port can be selected and deselected independently and read and write operation do not affect each other. Before chip deselected, all read and write pending operations are completed.

POWER-UP/POWER-DOWN SUPPLY VOLTAGE SEQUENCING

The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-down.

Notes: 1. Internal burst counter is fixed as 2-bit linear, i.e. when first address is A0+0, next internal burst address is A0+1.

2. "READ" refers to read active status with R=Low, "READ" refers to read inactive status with R=high. "WRITE" and "WRITE" are the same case.

3. Read and write state machine can be active simultaneously.

4. State machine control timing sequence is controlled by K.

TRUTH TABLES

SYNCHRONOUS TRUTH TABLE

к	R	W		I)		Q				OPERATION
n			D(A1)	D(A2)	D(A3)	D(A4)	Q(A1)	Q(A2)	Q(A3)	Q(A4)	OPERATION
Stopped	х	х	Previous state	Previous state	Previous state	Previous state	Clock Stop				
\uparrow	Н	н	Х	Х	Х	Х	High-Z	High-Z	High-Z	High-Z	No Operation
\uparrow	L^4	х	х	х	х	х	<u>D</u> о∪т at C(t+1)	Dout at C(t+2)	<u>D</u> оит at <u>C</u> (t+2)	Douт at C(t+3)	Read
↑	H^5	L^4	Din at K(t+1)	Din at K(t+1)	Din at K(t+2)	Din at K(t+2)	х	х	х	х	Write

Notes: 1. X means "Don't Care".

2. The rising edge of clock is symbolized by (\uparrow).

3. Before enter into clock stop status, all pending read and write operations will be completed.

4. This signal was HIGH on previous K clock rising edge. Initiating consecutive READ or WRITE operations on consecutive K clock rising edges is not permitted. The device will ignore the second request.

5. If this signal was LOW to initiated the previous cycle, this signal becomes a don't care for this operation however it is strongly recommended that this signal is brought HIGH as shown in the truth table.

WRITE TRUTH TABLE(x18)

К	К	B₩₀	BW1	OPERATION	
\uparrow		L	L	WRITE ALL BYTEs (K↑)	
	\uparrow	L	L	WRITE ALL BYTES ($\overline{K}\uparrow$)	
\uparrow		L	н	WRITE BYTE 0 (K↑)	
	\uparrow	L	н	WRITE BYTE 0 (\overline{K})	
\uparrow		н	L	WRITE BYTE 1 (K↑)	
	\uparrow	н	L	WRITE BYTE 1 (\overline{K})	
\uparrow		н	н	WRITE NOTHING (K [↑])	
	\uparrow	Н	Н	WRITE NOTHING (\overline{K})	

Notes: 1. X means "Don't Care".

2. All inputs in this table must meet setup and hold time around the rising edge of input clock K or \overline{K} (\uparrow).

3. Assumes a WRITE cycle was initiated.

4. This table illustrates operation for x18 devices.

WRITE TRUTH TABLE(x36)

К	ĸ	BW ₀	BW ₁	BW ₂	BW3	OPERATION
1		L	L	L	L	WRITE ALL BYTEs (K^{\uparrow})
	↑	L	L	L	L	WRITE ALL BYTES (\overline{K}^{\uparrow})
\uparrow		L	Н	Н	Н	WRITE BYTE 0 (K [↑])
	\uparrow	L	Н	Н	Н	WRITE BYTE 0 ($\overline{\mathbf{K}}$)
\uparrow		Н	L	Н	Н	WRITE BYTE 1 (K [↑])
	\uparrow	Н	L	Н	Н	WRITE BYTE 1 ($\overline{K}\uparrow$)
\uparrow		Н	Н	L	L	WRITE BYTE 2 and BYTE 3 (K^{\uparrow})
	1	Н	Н	L	L	WRITE BYTE 2 and BYTE 3 ($\overline{\mathbf{K}}$)
1		Н	Н	Н	Н	WRITE NOTHING (K [↑])
	\uparrow	Н	Н	Н	Н	WRITE NOTHING ($\overline{K}\uparrow$)

Notes: 1. X means "Don't Care".

2. All inputs in this table must meet setup and hold time around the rising edge of input clock K or \overline{K} (\uparrow).

3. Assumes a WRITE cycle was initiated.

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT	
Voltage on VDD Supply Relative to Vss		Vdd	-0.5 to 2.9	V
Voltage on VDDQ Supply Relative to Vss		Vddq	-0.5 to VDD	V
Voltage on Input Pin Relative to Vss		Vin	-0.5 to VDD+0.3	V
Storage Temperature		Tstg	-65 to 150	°C
Operating Temperature	Commercial	Topr	0 to 70	°C
Operating Temperature	Topr	-40 to 85	°C	
Storage Temperature Range Under Bias	TBIAS	-10 to 85	°C	

*Note: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VDDQ must not exceed VDD during normal operation.

PARAMETER SYMBOL **TEST CONDITIONS** MIN MAX UNIT Input Leakage Current ١L VDD=Max ; VIN=Vss to VDDQ -2 +2 μΑ -2 +2 μA Output Leakage Current IOL Output Disabled, -30 550 _ -25 -500 VDD=Max , IOUT=0mA Operating Current Icc mΑ (x36) : DDR Cycle Time \geq tкнкн Min -20 450 --16 400 -30 450 --25 _ 400 VDD=Max , IOUT=0mA **Operating Current** Icc mΑ (x18) : DDR Cycle Time ≥ tкнкн Min 350 -20 --16 300 -30 230 -Device deselected, -25 _ 210 Standby Current(NOP): DDR IOUT=0mA, f=Max, ISB1 mΑ 190 -20 -All Inputs $\leq 0.2V$ or $\geq VDD-0.2V$ -16 170 Output High Voltage VOH1 VDDQ/2-0.12 VDDQ/2+0.12 V

DC ELECTRICAL CHARACTERISTICS(VDD=1.8V ±0.1V, TA=0°C to +70°C)

Notes: 1. Minimum cycle. IOUT=0mA.

Output Low Voltage

Output High Voltage

Output Low Voltage

Input Low Voltage

Input High Voltage

2. $|I_{OH}| = (V_{DDQ}/2)/(RQ/5) \pm 15\%$ for $175\Omega \le RQ \le 350\Omega$.

3. $|I_{OL}| = (V_{DDQ}/2)/(RQ/5) \pm 15\%$ for $175\Omega \le RQ \le 350\Omega$.

4. Minimum Impedance Mode when ZQ pin is connected to VDDQ.

5. Operating current is calculated with 50% read cycles and 50% write cycles.

VOL1

Voh2

Vol2

VIL

Vн

Standby Current is only after all pending read and write burst operations are completed.

Іон=-1.0mA

IOL=1.0mA

7. Programmable Impedance Mode.

 These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring timing parameters.

9. VIL (Min) DC=-0.3V, VIL (Min) AC=-1.5V(pulse width \leq 3ns).

10. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=VDDQ+0.85V(pulse width \leq 3ns).

VDDQ/2-0.12

VDDQ-0.2

Vss

-0.3

VREF+0.1

VDDQ/2+0.12

Vddq

0.2

VREF-0.1

VDDQ+0.3

NOTE

1,5

1,5

1,6

2,7

3,7

4

4

8,9

8,10

v

V

V

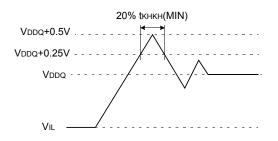
v

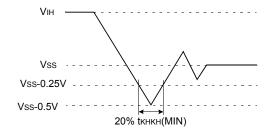
V

AC ELECTRICAL CHARACTERISTICS (VDD=1.8V ±0.1V, TA=0°C to +70°C)

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTES
Input High Voltage	VIH (AC)	VREF + 0.2	-	V	1,2
Input Low Voltage	VIL (AC)	-	VREF - 0.2	V	1,2

Notes: 1. This condition is for AC function test only, not for AC parameter test.


To maintain a valid level, the transition edge of the input must:
 a) Sustain a constant slew rate from the current AC level through the target AC level, VIL(AC) or VIH(AC)


b) Reach at least the target AC level

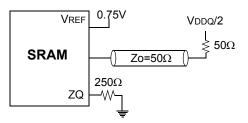
c) After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC)

Overershoot Timing

Undershoot Timing

Note: For power-up, ViH \leq VDDQ+0.3V and VDD \leq 1.7V and VDDQ \leq 1.4V t \leq 200ms

OPERATING CONDITIONS $(0^{\circ}C \le TA \le 70^{\circ}C)$


PARAMETER	SYMBOL	MIN	MAX	UNIT
Supply Voltage	Vdd	1.7	1.9	V
Supply Voltage	Vddq	1.4	1.9	V
Reference Voltage	VREF	0.68	0.95	V
Ground	Vss	0	0	V

AC TEST CONDITIONS

Parameter	Symbol	Value	Unit
Core Power Supply Voltage	Vdd	1.7~1.9	V
Output Power Supply Voltage	VDDQ	1.4~1.9	V
Input High/Low Level	VIH/VIL	1.25/0.25	V
Input Reference Level	VREF	0.75	V
Input Rise/Fall Time	TR/TF	0.3/0.3	ns
Output Timing Reference Level		VDDQ/2	V

Note: Parameters are tested with RQ=250 $\!\Omega$

AC TEST OUTPUT LOAD

AC TIMING CHARACTERISTICS(VDD=1.8V±0.1V, TA=0°C to +70°C)

DADAMETED	0/4/201	-3	30	-2	25	-2	20	-1	16		NOTE
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	NOTE
Clock											
Clock Cycle Time (K, \overline{K} , C, \overline{C})	tкнкн	3.30	8.40	4.00	8.40	5.00	8.40	6.00	8.40	ns	
Clock Phase Jitter (K, K, C, C)	tKC var		0.20		0.20		0.20		0.20	ns	5
Clock High Time (K, \overline{K} , C, \overline{C})	tкнкг	1.32		1.60		2.00		2.40		ns	
Clock Low Time (K, \overline{K} , C, \overline{C})	tкlкн	1.32		1.60		2.00		2.40		ns	
Clock to $\overline{\text{Clock}}$ (K $\uparrow \rightarrow \overline{\text{K}}\uparrow$, C $\uparrow \rightarrow \overline{\text{C}}\uparrow$)	tкн к н	1.49		1.80		2.20		2.70		ns	
Clock to data clock ($K\uparrow \rightarrow C\uparrow, \overline{K}\uparrow \rightarrow \overline{C}\uparrow$)	tкнсн	0.00	1.45	0.00	1.80	0.00	2.30	0.00	2.80	ns	
DLL Lock Time (K, C)	tKC lock	1024		1024		1024		1024		cycle	6
K Static to DLL reset	tKC reset	30		30		30		30		ns	
Output Times											
C, \overline{C} High to Output Valid	tсноv		0.45		0.45		0.45		0.50	ns	3
C, \overline{C} High to Output Hold	tснох	-0.45		-0.45		-0.45		-0.50		ns	3
C, \overline{C} High to Echo Clock Valid	tснсqv		0.45		0.45		0.45		0.50	ns	
C, \overline{C} High to Echo Clock Hold	tснсах	-0.45		-0.45		-0.45		-0.50		ns	
CQ, CQ High to Output Valid	tсанаv		0.27		0.30		0.35		0.40	ns	7
CQ, CQ High to Output Hold	tсанах	-0.27		-0.30		-0.35		-0.40		ns	7
C, High to Output High-Z	tснqz		0.45		0.45		0.45		0.50	ns	3
C, High to Output Low-Z	tснох1	-0.45		-0.45		-0.45		-0.50		ns	3
Setup Times											
Address valid to K rising edge	tavkh	0.40		0.50		0.60		0.70		ns	
Control inputs valid to K rising edge	tıvкн	0.40		0.50		0.60		0.70		ns	2
Data-in valid to K, \overline{K} rising edge	tdvkh	0.30		0.35		0.40		0.50		ns	
old Times											
K rising edge to address hold	tкнах	0.40		0.50		0.60		0.70		ns	
K rising edge to control inputs hold	tкніх	0.40		0.50		0.60		0.70		ns	
K, \overline{K} rising edge to data-in hold	tкнох	0.30		0.35		0.40		0.50		ns	

Notes: 1. All address inputs must meet the specified setup and hold times for all latching clock edges. 2. Control signal are R and W. In case of BWo,BW1 (BW2, BW3, also for x36) signal follow the data setup/hold times.

3. If C,C are tied high, K,K become the references for C,C timing parameters.
4. To avoid bus contention, at a given voltage and temperature tCHQX₁ is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX₁ is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7V)

It is not possible for two SRAMs on the same board to be at such different voltage and temperature.

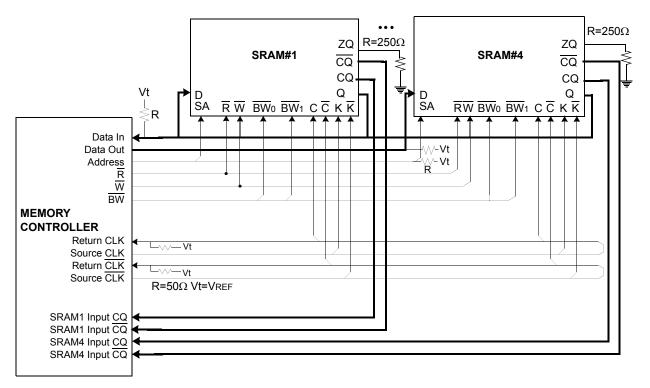
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.

6. Vdd slew rate must be less than 0.1V DC per 50 ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.

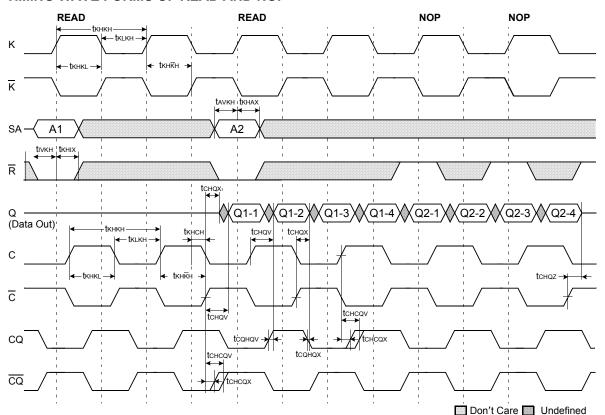
PIN CAPACITANCE

PRMETER	SYMBOL	TESTCONDITION	TYP	MAX	Unit	NOTES
Address Control Input Capacitance	CIN	VIN=0V	4	5	pF	
Input and Output Capacitance	Соит	Vout=0V	6	7	pF	
Clock Capacitance	CCLK	-	5	6	pF	

Note: 1. Parameters are tested with RQ=250 Ω and VDDQ=1.5V.

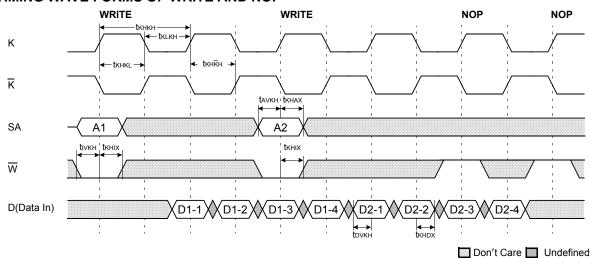

2. Periodically sampled and not 100% tested.

THERMAL RESISTANCE

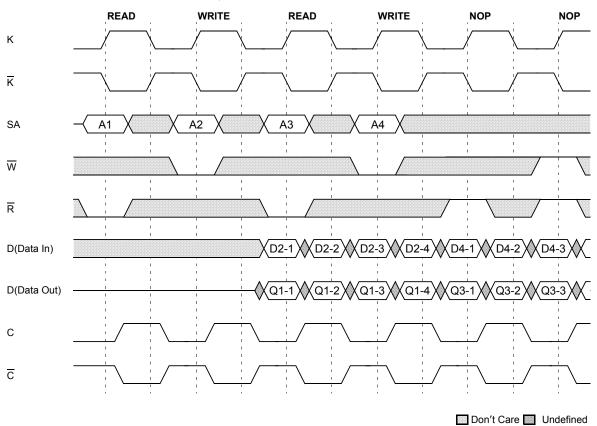

PRMETER	SYMBOL	ТҮР	Unit	NOTES
Junction to Ambient	θJA	17.1	°C/W	
Junction to Case	θJC	3.3	°C/W	

Note: Junction temperature is a function of on-chip power dissipation, package thermal impedance, mounting site temperature and mounting site thermal impedance. TJ=TA + PD x 0JA

APPLICATION INFORMATION



TIMING WAVE FORMS OF READ AND NOP

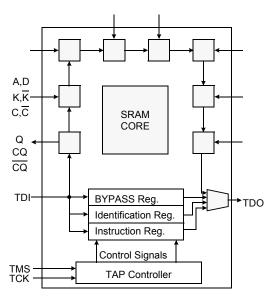

Note: 1. Q1-1 refers to output from address A1+0, Q1-2 refers to output from address A1+1 i.e. the next internal burst address following A1+0. 2. Outputs are disabled one cycle after a NOP.

TIMING WAVE FORMS OF WRITE AND NOP

Note: 1. D1-1 refers to input to address A1+0, D1-2 refers to input to address A1+1, i.e the next internal burst address following A1+0. 2. BWx (NWx) assumed active.

TIMING WAVE FORMS OF READ, WRITE AND NOP

Note: 1. If address A3=A2, data Q3-1=D2-1, data Q3-2=D2-2, data Q3-3=D2-3, data Q3-4=D2-4 Write data is forwarded immediately as read results. 2.BWx (NWx) assumed active.

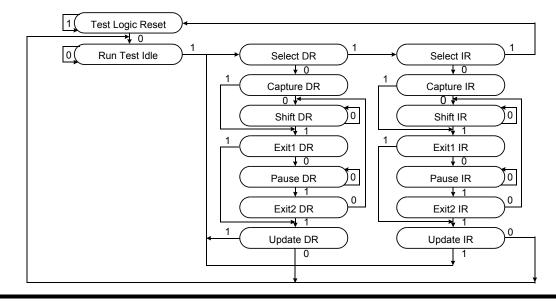


512Kx36 & 1Mx18 QDR[™] II b4 SRAM

IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG

This part contains an IEEE standard 1149.1 Compatible Test Access Port (TAP). The package pads are monitored by the Serial Scan circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must be tied to Vss to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to Vbb through a resistor. TDO should be left unconnected.

JTAG BLOCK DIAGRAM


TAP CONTROLLER STATE DIAGRAM

JTAG INSTRUCTION CODING

IR2	IR1	IR0	Instruction	TDO Output	Notes
0	0	0	EXTEST	Boundary Scan Register	1
0	0	1	IDCODE	Identification Register	3
0	1	0	SAMPLE-Z	Boundary Scan Register	2
0	1	1	RESERVED	Do Not Use	6
1	0	0	SAMPLE	Boundary Scan Register	5
1	0	1	RESERVED	Do Not Use	6
1	1	0	RESERVED	Do Not Use	6
1	1	1	BYPASS	Bypass Register	4

NOTE :

- 1. Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs. This instruction is not IEEE 1149.1 compliant.
- 2. Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs.
- 3. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.
- Bypass register is initiated to Vss when BYPASS instruction is invoked. The Bypass Register also holds serially loaded TDI when exiting the Shift DR states.
- 5. SAMPLE instruction dose not places DQs in Hi-Z.
- 6. This instruction is reserved for future use.

SAMSUNG ELECTRONICS Rev. 5.0 July 2006

SCAN REGISTER DEFINITION

Part	Instruction Register	Bypass Register	ID Register	Boundary Scan
512Kx36	3 bits	1 bit	32 bits	107 bits
1Mx18	3 bits	1 bit	32 bits	107 bits

ID REGISTER DEFINITION

Part	Revision Number (31:29)	Part Configuration (28:12)	Samsung JEDEC Code (11: 1)	Start Bit(0)
512Kx36	000	00def0wx0t0q0b0s0	00001001110	1
1Mx18	000	00def0wx0t0q0b0s0	00001001110	1

Note : Part Configuration

/def=001 for 18Mb, /wx=11 for x36, 10 for x18

/t=1 for DLL Ver., 0 for non-DLL Ver. /q=1 for QDR, 0 for DDR /b=1 for 4Bit Burst, 0 for 2Bit Burst /s=1 for Separate I/O, 0 for Common I/O

BOUNDARY SCAN EXIT ORDER

ORDER	PIN ID	ORDER
1	6R	37
2	6P	38
3	6N	39
4	7P	40
5	7N	41
6	7R	42
7	8R	43
8	8P	44
9	9R	45
10	11P	46
11	10P	47
12	10N	48
13	9P	49
14	10M	50
15	11N	51
16	9M	52
17	9N	53
18	11L	54
19	11M	55
20	9L	56
21	10L	57
22	11K	58
23	10K	59
24	9J	60
25	9K	61
26	10J	62
27	11J	63
28	11H	64
29	10G	65
30	9G	66
31	11F	67
32	11G	68
33	9F	69
34	10F	70
35	11E	71
36	10E	72

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. .	
38 9E 39 10C 40 11D 41 9C 42 9D 43 11B 44 11C 45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	ORDER	PIN ID
39 10C 40 11D 41 9C 42 9D 43 11B 44 11C 45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C		
40 $11D$ 41 $9C$ 42 $9D$ 43 $11B$ 44 $11C$ 45 $9B$ 46 $10B$ 47 $11A$ 48 Internal 49 $9A$ 50 $8B$ 51 $7C$ 52 $6C$ 53 $8A$ 54 $7A$ 55 $7B$ 56 $6B$ 57 $6A$ 58 $5B$ 59 $5A$ 60 $4A$ 61 $5C$ 62 $4B$ 63 $3A$ 64 $1H$ 65 $1A$ 66 $2B$ 67 $3B$ 68 $1C$ 69 $1B$ 70 $3D$ 71 $3C$	38	9E
41 9C 42 9D 43 11B 44 11C 45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	39	10C
42 9D 43 11B 44 11C 45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	40	11D
43 11B 44 11C 45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	41	9C
44 11C 45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	42	9D
45 9B 46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	43	11B
46 10B 47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	44	11C
47 11A 48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	45	9B
48 Internal 49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	46	10B
49 9A 50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	47	11A
50 8B 51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	48	Internal
51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	49	9A
51 7C 52 6C 53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	50	8B
53 8A 54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C		7C
54 7A 55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	52	6C
55 7B 56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	53	8A
56 6B 57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	54	7A
57 6A 58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	55	7B
58 5B 59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	56	6B
59 5A 60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	57	6A
60 4A 61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	58	5B
61 5C 62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	59	5A
62 4B 63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	60	4A
63 3A 64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	61	5C
64 1H 65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	62	4B
65 1A 66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	63	3A
66 2B 67 3B 68 1C 69 1B 70 3D 71 3C	64	1H
67 3B 68 1C 69 1B 70 3D 71 3C	65	1A
68 1C 69 1B 70 3D 71 3C	66	2B
68 1C 69 1B 70 3D 71 3C	67	3B
69 1B 70 3D 71 3C	68	
70 3D 71 3C		
71 3C		
	71	
72 1D	72	1D

ORDER	PIN ID
73	2C
74	3E
75	2D
76	2E
77	1E
78	2F
79	3F
80	1G
81	1F
82	3G
83	2G
84	1J
85	2J
86	3K
87	3J
88	2K
89	1K
90	2L
91	3L
92	1M
93	1L
94	3N
95	3M
96	1N
97	2M
98	3P
99	2N
100	2P
101	1P
102	3R
103	4R
104	4P
105	5P
106	5N
107	5R

Note: 1. NC pins are read as "X" (i.e. don't care.)

JTAG DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Power Supply Voltage	Vdd	1.7	1.8	1.9	V	
Input High Level	Vін	1.3	-	VDD+0.3	V	
Input Low Level	VIL	-0.3	-	0.5	V	
Output High Voltage (Іон=-2mA)	Vон	1.4	-	Vdd	V	
Output Low Voltage(IoL=2mA)	Vol	Vss	-	0.4	V	

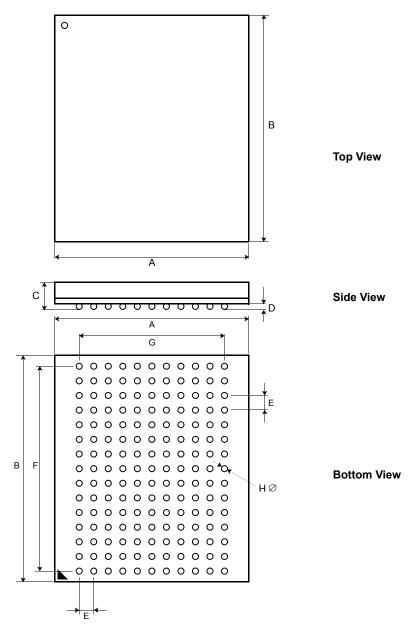
Note: 1. The input level of SRAM pin is to follow the SRAM DC specification.

JTAG AC TEST CONDITIONS

Parameter	Symbol	Min	Unit	Note
Input High/Low Level	VIH/VIL	1.8/0.0	V	
Input Rise/Fall Time	TR/TF	1.0/1.0	ns	
Input and Output Timing Reference Level		0.9	V	1

Note: 1. See SRAM AC test output load on page 11.

JTAG AC CHARCTERISTICS


Parameter	Symbol	Min	Мах	Unit	Note
TCK Cycle Time	tснсн	50	-	ns	
TCK High Pulse Width	t CHCL	20	-	ns	
TCK Low Pulse Width	t CLCH	20	-	ns	
TMS Input Setup Time	tмvсн	5	-	ns	
TMS Input Hold Time	tснмх	5	-	ns	
TDI Input Setup Time	tdvcн	5	-	ns	
TDI Input Hold Time	t CHDX	5	-	ns	
SRAM Input Setup Time	tsvcн	5	-	ns	
SRAM Input Hold Time	tcнsx	5	-	ns	
Clock Low to Output Valid	tclqv	0	10	ns	

JTAG TIMING DIAGRAM

165 FBGA PACKAGE DIMENSIONS

13mm x 15mm Body, 1.0mm Bump Pitch, 11x15 Ball Array

Symbol	Value	Units	Note	Symbol	Value	Units	Note
A	13 ± 0.1	mm		E	1.0	mm	
В	15 ± 0.1	mm		F	14.0	mm	
С	1.3 ± 0.1	mm		G	10.0	mm	
D	0.35 ± 0.05	mm		н	0.5 ± 0.05	mm	

