

HA16158P/FP

PFC & PWM Control IC

REJ03F0147-0200 Rev.2.00 Jan 30, 2007

Description

The HA16158 is a power supply controller IC combining an AC-DC converter switching controller for power factor correction and an off-line power supply switching controller. The PFC (power factor correction) section employs average current mode PWM and the off-line power supply control section employs peak current mode PWM.

The HA16158 allows the operating frequency to be varied with a single timing resistance, enabling it to be used for a variety of applications.

The PFC operation can be turned on and off by an external control signal. Use of this on/off function makes it possible to disable PFC operation at a low line voltage, or to perform remote control operation from the transformer secondary side.

The PWM controller includes a power-saving function that reduces the operating frequency to a maximum of 1/64 in the standby state, greatly decreasing switching loss.

The PFC section and PWM section are each provided with a soft start control pin, enabling a soft start time to be set easily.

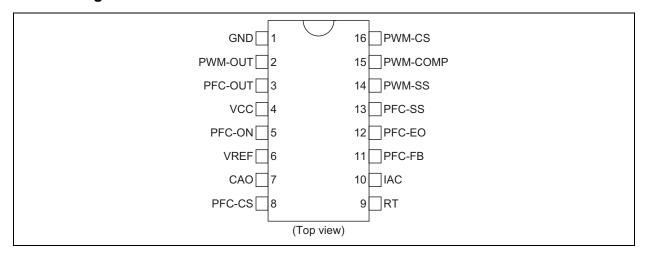
Features

<Maximum Ratings>

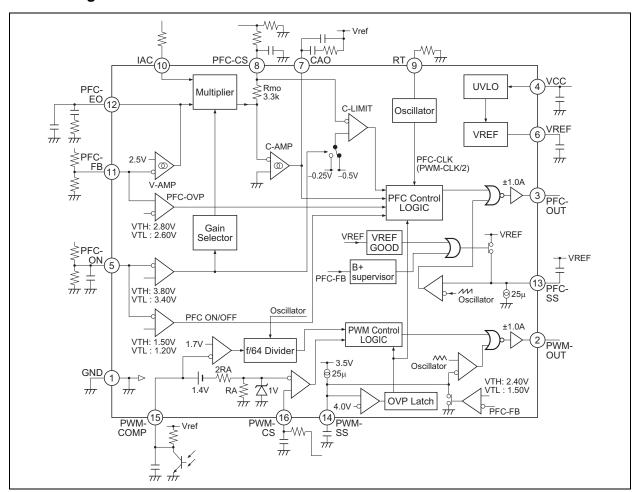
- Supply voltage Vcc: 24 V
- Operating junction temperature Tjopr: –40°C to +125°C

<Electrical Characteristics>

- VREF output voltage VREF: $5.0 \text{ V} \pm 2\%$
- UVLO start threshold VH: $16.0 \text{ V} \pm 1.0 \text{ V}$
- UVLO shutdown threshold VL: $10.0 \text{ V} \pm 0.6 \text{ V}$
- PFC output maximum duty cycle Dmax-pfc: 95% typ.
- PWM output maximum duty cycle Dmax-pwm: 45% typ.


<Functions>

- Synchronized PFC and PWM timing
- PFC function on/off control
- PWM power-saving function (frequency reduced to maximum of 1/64)
- PWM overvoltage latch protection circuit
- Soft start control circuits for both PFC and PWM
- Package lineup: SOP-16/DILP-16


Pin Arrangement

Pin Functions

Pin No.	Pin Name	Pin Functions						
1	GND	Ground						
2	PWM-OUT	Power MOS FET driver output (PWM control)						
3	PFC-OUT	Power MOS FET driver output (PFC control)						
4	VCC	Supply voltage						
5	PFC-ON	PFC function on/off signal input						
6	VREF	Reference voltage						
7	CAO	Average current control error amplifier output						
8	PFC-CS	PFC control current sense signal input						
9	RT	Operating frequency setting timing resistance connection						
10	IAC	Multiplier reference current input						
11	PFC-FB	PFC control error amplifier input						
12	PFC-EO	PFC control error amplifier output						
13	PFC-SS	PFC control soft start time setting capacitance connection						
14	PWM-SS	PWM control soft start time setting capacitance connection						
15	PWM-COMP	PWM control voltage feedback						
16	PWM-CS	PWM control current sense signal input						

Block Diagram

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit	Note
Power supply voltage	Vcc	24	V	
PFC-OUT output current (peak)	lpk-out1	±1.0	А	3
PWM-OUT output current (peak)	lpk-out2	±1.0	Α	3
PFC-OUT output current (DC)	Idc-out1	±0.1	Α	
PWM-OUT output current (DC)	Idc-out2	±0.1	Α	
Pin voltage	Vi-group1	-0.3 to Vcc	V	4
	Vi-group2	-0.3 to Vref	V	5
CAO pin voltage	Vcao	-0.3 to Veoh-ca	V	
PFC-EO pin voltage	Vpfc-eo	-0.3 to Veoh-pfc	V	
PFC-ON pin voltage	Vpfc-on	-0.3 to 7	V	
RT pin current	Irt	50	μΑ	
IAC pin current	liac	1	mA	
PFC-CS pin voltage	Vi-cs	-1.5 to 0.3	V	
VREF pin current	lo-ref	-20	mA	
VREF pin voltage	Vref	-0.3 to Vref	V	
Operating junction temperature	Tj-opr	-40 to +125	°C	6
Storage temperature	Tstg	-55 to +150	°C	

Notes: 1. Rated voltages are with reference to the GND (SGND, PGND) pin.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. Group1 is the rated voltage for the following pins: PFC-OUT, PWM-OUT
- 5. Group2 is the rated voltage for the following pins: PFC-FB, PWM-CS, PWM-COMP, IAC, PFC-SS, PWM-SS, RT
- 6. HA16158P (DILP): θ ja = 120°C/W HA16158FP (SOP): θ ja = 120°C/W

This value is based on actual measurements on a 10% wiring density glass epoxy circuit board (40 mm \times 40 mm \times 1.6 mm).

Electrical Characteristics

 $(Ta = 25^{\circ}C, Vcc = 12 \text{ V}, RT = 200 \text{ k}\Omega)$

	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply	Start threshold	VH	15.0	16.0	17.0	V	
	Shutdown threshold	VL	9.4	10.0	10.6	V	
	UVLO hysteresis	dV_{UVL}	5.2	6.0	6.8	V	
	Start-up current	Is	160	220	280	μΑ	Vcc = 14.8V
	Is temperature stability	dls/dTa	-	-0.3	_	%/°C	*1
	Operating current	Icc	5.5	7.0	8.5	mA	IAC = 0A, CL = 0F
	Shunt zenner voltage	Vz	25.5	27.5	29.5	V	Icc = 14mA
	Vz temperature stability	dVz/dTa	_	-4	-	mV/°C	Icc = 14mA *1
	Latch current	ILATCH	180	250	320	μΑ	Vcc = 9V
VREF	Output voltage	Vref	4.9	5.0	5.1	V	Isource = 1mA
	Line regulation	Vref-line	_	5	20	mV	Isource = 1mA, Vcc = 12V to 23V
	Load regulation	Vref-load	-	5	20	mV	Isource = 1mA to 20mA
	Temperature stability	dVref	-	80	-	ppm/°C	Ta = -40 to 125°C *1
Oscillator	Initial accuracy	fpwm	117	130	143	kHz	Measured pin: PWM-OUT
		fpfc	58.5	65	71.5	kHz	Measured pin: PFC-OUT
	fpwm temperature stability	dfpwm/dTa	_	±0.1	-	%/°C	Ta = -40 to 125°C *1
	fpwm voltage stability	fpwm(line)	-1.5	+0.5	+1.5	%	VCC = 12V to 18V
	Ramp peak voltage	Vramp-H	_	3.6	4.0	V	PFC *1
	Ramp valley voltage	Vramp-L	-	0.65	-	V	PFC *1
	CT peak voltage	Vct-H	_	3.2	_	V	PWM *1
	CT valley voltage	Vct-L	1.50	1.60	_	V	PWM *1
	RT voltage	Vrt	0.85	1.00	1.15	V	Measured pin: RT
Supervisor	PFC on voltage	Von-pfc	1.4	1.5	1.6	V	
	PFC off voltage	Voff-pfc	1.1	1.2	1.3	V	
	PFC on-off hysteresis	dVon-off	0.2	0.3	0.4	V	
	Input current	Ipfc-on	_	0.1	1.0	μΑ	PFC-ON = 2V
	PFC OVP set voltage	Vovps-pfc	2.65	2.80	2.95	V	Input pin: PFC-FB
	PFC OVP reset voltage	Vovpr-pfc	2.45	2.60	2.75	V	Input pin: PFC-FB
	PFC OVP hysteresis	dVovp	0.10	0.20	0.30	V	
	B+ good voltage	Vb-good	2.25	2.40	2.55	V	Measured pin: PFC-FB
	B+ fail voltage	Vb-fail	1.4	1.5	1.6	V	Measured pin: PFC-FB
OVP latch	Latch threshold voltage	Vlatch	3.76	4.00	4.24	V	Input pin: PWM-SS
	Latch reset voltage	Vcc-res	6.1	7.1	8.1	V	
Power saving	Power saving on voltage	Von-save	1.53	1.70	1.87	V	Measured pin: PWM-COMP
for PWM	Minimum frequency at light load	fpwm-min	-	2	-	kHz	PWM-COMP = 1.5V Measured pin: PWM-OUT *1

Note: 1. Reference values for design.

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, Vcc = 12 \text{ V}, RT = 200 \text{ k}\Omega)$

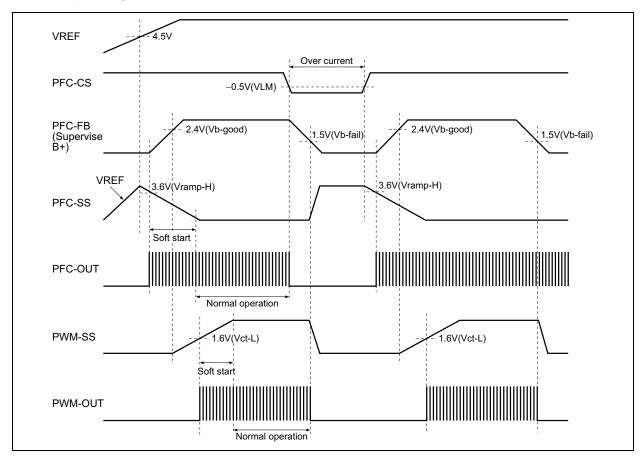
Item		Symbol	Min	Typ Max Unit		Unit	Test Conditions	
Soft start for	Soft start time	tss-pwm	-	4.2	-	ms	PWM-SS = 0V to Vct-h *1	
PWM	Source current	Iss-pwm	-20.0	-25.0	-30.0	μΑ	Measured pin: PWM-SS	
	High voltage	Vh-ss	3.25	3.5	3.75	V	Measured pin: PWM-SS	
Soft start for	Soft start time	tss-pfc	_	5.7	_	ms	PFC-SS = Vref to Vramp-I *1	
PFC	Source current	Iss-pfc	+20.0	+25.0	+30.0	μΑ	Measured pin: PFC-SS	
PWM	Delay to output	td-cs	_	210	300	ns	PWM-EO = 5V,	
current							PWM-CS = 0 to 2V	
sense								
PFC current	Threshold voltage	VLM1	-0.45	-0.50	-0.55	V	PFC-ON = 2V	
limit	Threshold voltage	VLM2	-0.22	-0.25	-0.28	V	PFC-ON = 4V	
	Delay to output	td-LM	-	280	500	ns	PFC-CS = 0 to -1V	
PFC-V _{AMP}	Feedback voltage	Vfb-pfc	2.45	2.50	2.55	V	PFC-EO = 2.5V	
	Input bias current	lfb-pfc	-0.3	0	0.3	μΑ	Measured pin: PFC-FB	
	Open loop gain	Av-pfc	_	65	_	dB	*1	
	High voltage	Veoh-pfc	5.0	5.7	6.4	V	PFC-FB = 2.3V, PFC-EO: Open	
	Low voltage	Veol-pfc	-	0.1	0.3	V	PFC-FB = 2.7V, PFC-EO: Open	
	Source current	Isrc-pfc	_	-90	_	μΑ	PFC-FB = 1.0V, PFC-EO: 2.5V * ¹	
	Sink current	Isnk-pfc	-	90	_	μА	PFC-FB = 4.0V, PFC-EO: 2.5V *1	
	Transconductance	Gm-pfcv	150	200	250	μA/V	PFC-FB = 2.5V, PFC-EO: 2.5V	
PFC-OUT	Minimum duty cycle	Dmin-pfc	_	_	0	%	CAO = 4.0V	
	Maximum duty cycle	Dmax-pfc	90	95	98	%	CAO = 0V	
	Rise time	tr-pfc	-	30	100	ns	CL = 1000pF	
	Fall time	tf-pfc	-	30	100	ns	CL = 1000pF	
	Peak current	lpk-pfc	-	1.0	_	Α	$CL = 0.01 \mu F^{*1}$	
	Low voltage	Vol1-pfc	_	0.05	0.2	V	lout = 20mA	
		Vol2-pfc	_	0.5	2.0	V	lout = 200mA	
		Vol3-pfc	-	0.03	0.7	V	lout = 10mA, VCC = 5V	
	High voltage	Voh1-pfc	11.5	11.9	-	V	lout = -20mA	
		Voh2-pfc	10.0	11.0	-	V	lout = -200mA	
PWM-OUT	Minimum duty cycle	Dmin-pwm	-	_	0	%	PWM-COMP = 0V	
	Maximum duty cycle	Dmax-pwm	42	45	49	%	PWM-COMP = Vref	
	Rise time	tr-pwm	_	30	100	ns	CL = 1000pF	
	Fall time	tf-pwm	_	30	100	ns	CL = 1000pF	
	Peak current	lpk-pwm	_	1.0	_	Α	CL = 0.01µF *1	
	Low voltage	Vol1-pwm	_	0.05	0.2	V	lout = 20mA	
		Vol2-pwm	_	0.5	2.0	V	lout = 200mA	
		Vol3-pwm	_	0.03	0.7	V	lout = 10mA, VCC = 5V	
	High voltage	Voh1- pwm	11.5	11.9	_	V	lout = -20mA	
		Voh2- pwm	10.0	11.0	_	V	lout = -200mA	

Note: 1. Reference values for design.

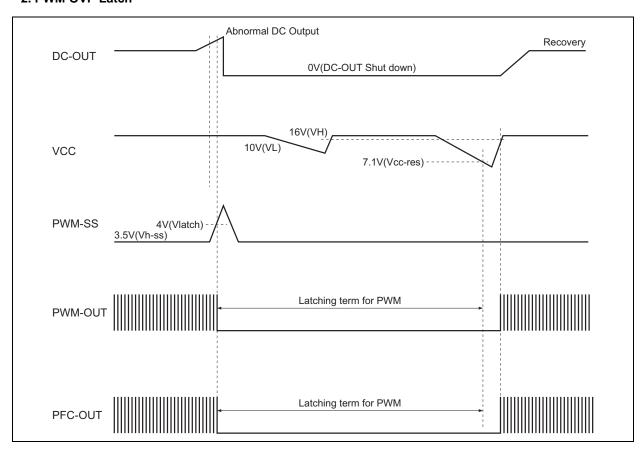
Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, Vcc = 12 V, RT = 200 k\Omega)$

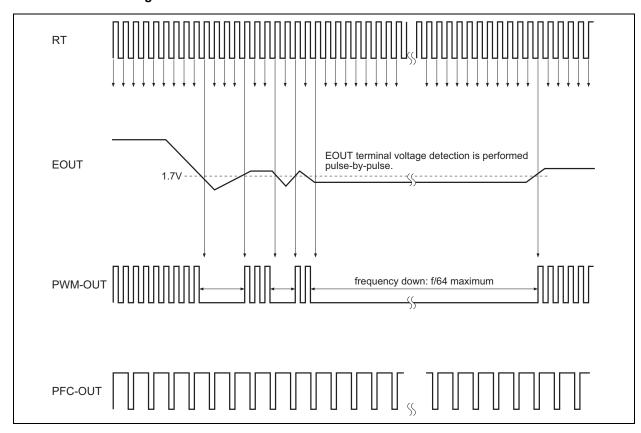
Item		Symbol	Min	Тур	Max	Unit	Test Conditions
PFC-CAMP	Input offset voltage	Vio-ca	_	±7	_	mV	*1
	Open loop gain	Av-ca	_	65	-	dB	*1
	High voltage	Veoh-ca	5.0	5.7	6.4	V	
	Low voltage	Veol-ca	_	0.1	0.3	V	
	Source current	Isrc-ca	_	-90	_	μΑ	CAO = 2.5V *1
	Sink current	Isnk-ca	_	90	_	μΑ	CAO = 2.5V *1
	Transconductance	Gm-pfcc	150	200	250	μA/V	*1
IAC/Multiplier	IAC pin voltage	Viac	0.7	1.0	1.3	V	IAC = 100μA
	Terminal offset current	Imo-offset1	-67	-90	-113	μΑ	IAC = 0A, PFC-ON = 2V
		Imo-offset2	-60	-80	-100	μΑ	IAC = 0A, PFC-ON = 4V
	Output current (PFC-ON = 2.0V)	lmo1	_	-20	_	μΑ	PFC-EO = 2V, IAC = $100\mu A^{*1, 2}$
		lmo2	_	-60	_	μΑ	PFC-EO = 4V, IAC = $100\mu A^{*1, 2}$
	Output current (PFC-ON = 4.0V)	lmo3	_	- 5	_	μΑ	PFC-EO = 2V, IAC = $100\mu A^{*1, 2}$
		lmo4	-	-15	_	μΑ	PFC-EO = 4V, IAC = $100\mu A^{*1, 2}$
	PFC-CS resistance	Rmo	-	3.3	_	kΩ	*1
Gain selector	Threshold voltage for K = 0.05	VK-H	3.60	3.80	4.00	V	Measured pin: PFC-ON
	Threshold voltage for K = 0.25	VK-L	3.20	3.40	3.60	V	Measured pin: PFC-ON
	VK hysteresis	dVK	0.30	0.40	0.50	V	*1


Notes: 1. Reference values for design.

2. Imo1 to Imo4 are defined as:
Imo = (PFC-CS pin current) – (Imo-offset)


PFC-CS Terminal Imo-offset PFC-CLIMIT

Timing Diagram


1. Start-up Timing

2. PWM OVP Latch

3. PWM Power Saving

Functional Description

1. UVL Circuit

The UVL circuit monitors the Vcc voltage and halts operation of the IC in the event of a low voltage.

The voltage for detecting Vcc has a hysteresis characteristic, with 16.0 V as the start threshold and 10.0 V as the shutdown threshold.

When the IC has been halted by the UVL circuit, control is performed to fix driver circuit output low and halt VREF output and the oscillator.

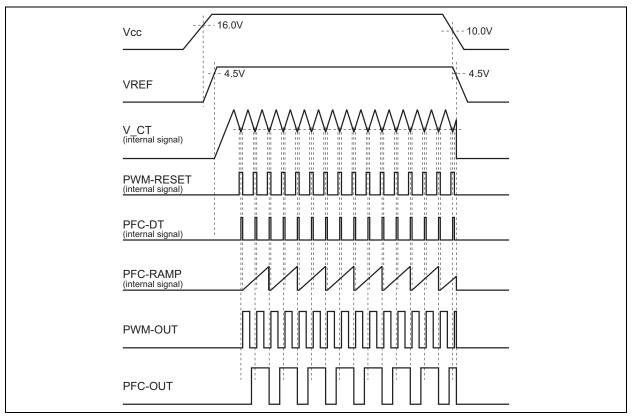


Figure 1

2. Soft Start Circuit (for PWM Control)

This function gradually increases the pulse width of the PWM-OUT pin from a 0% duty cycle at start-up to prevent a sudden increase in the pulse width that may cause problems such as transient stress on external parts or overshoot of the secondary-side output voltage.

The soft start time can easily be set with a single external capacitance.

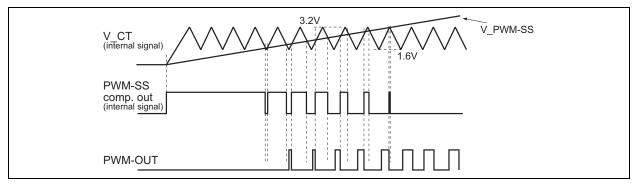


Figure 2

Soft start time tss-pwm is determined by PWM-SS pin connection capacitance Css-pwm and an internal constant, and can be estimated using the equation shown below.

Soft start time tss-pwm is the time until the PWM-SS pin voltage reaches upper-end voltage 3.2 V of the IC-internal CT voltage waveform after VREF starts up following UVLO release.

Soft start time tss-pwm when Css-pwm is 3.3 nF is given by the following equation.

tss-pwm =
$$\frac{\text{Css-pwm} \times \text{Vct-H}}{\text{Iss-pwm}} = \frac{33 \text{ [nF]} \times 3.2 \text{ [V]}}{25 \text{ [}\mu\text{A]}}$$

 $\approx 4.2 \text{ [ms]}$

 * Iss-pwm: PWM-SS pin source current, 25 μA typ.

3. Soft Start Circuit (for PFC Control)

This function gradually increases the pulse width of the PFC-OUT pin from a 0% duty cycle at start-up to prevent a sudden increase in the pulse width that may cause problems such as transient stress on external parts or overshoot of the PFC output voltage (B+ voltage).

The soft start time can easily be set with a single external capacitance.

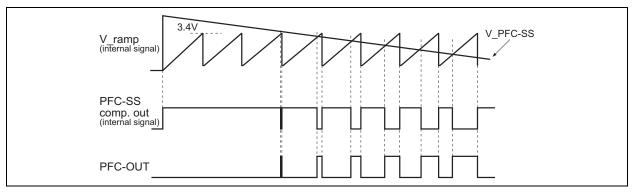


Figure 3

Soft start time tss-pfc is determined by PFC-SS pin connection capacitance Css-pfc and an internal constant, and can be estimated using the equation shown below.

Soft start time tss-pfc is the time until the PFC-SS pin voltage reaches lower-end voltage 0.65 V of the IC-internal RAMP voltage waveform after VREF starts up following UVLO release.

Soft start time tss-pfc when Css-pfc is 3.3 nF is given by the following equation.

tss-pfc =
$$\frac{\text{Css-pfc} \times (\text{VREF} - \text{Vramp-L})}{\text{Iss-pwm}} = \frac{33 \text{ [nF]} \times (5 - 0.65)}{25 \text{ [µA]}}$$

 $\approx 5.7 \text{ [ms]}$

In addition, when you do not use a soft start function, please ground this terminal.

^{*} Iss-pfc: PFC-SS pin sink current, 25 μ A typ.

4. PFC On/Off Function

On/off control of the PFC function can be performed using the PFC-ON pin.

If an AC voltage that has undergone primary rectification and has been divided by an external resistance is input, it is possible to halt PFC operation in the event of a low input voltage. On/off control is also possible by using a logic signal.

When the PFC function is turned on/off by using the PFC-ON pin, however, the PFC-SS pin cannot be reset. Therefore, a soft start is not operated at the start-up by the PFC-ON pin.

The figure below illustrates an example of circuit for simultaneous reset of the PFC-SS pin and PWM-SS pin.

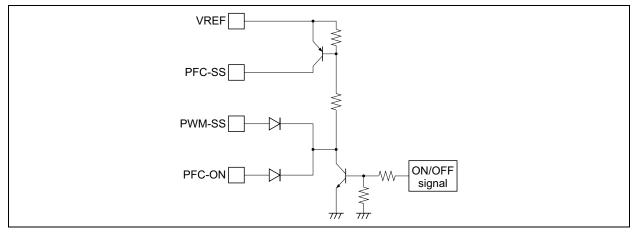


Figure 4 Example of Circuit Configuration to Turn On/Off PFC & PWM Functions

This IC also incorporates a function that automatically detects a 100 V system or 200 V system AC voltage at the PFC-ON pin, and switches multiplier gain and the PFC-CS comparison voltage.

These functions simplify the design of a power supply compatible with worldwide input.

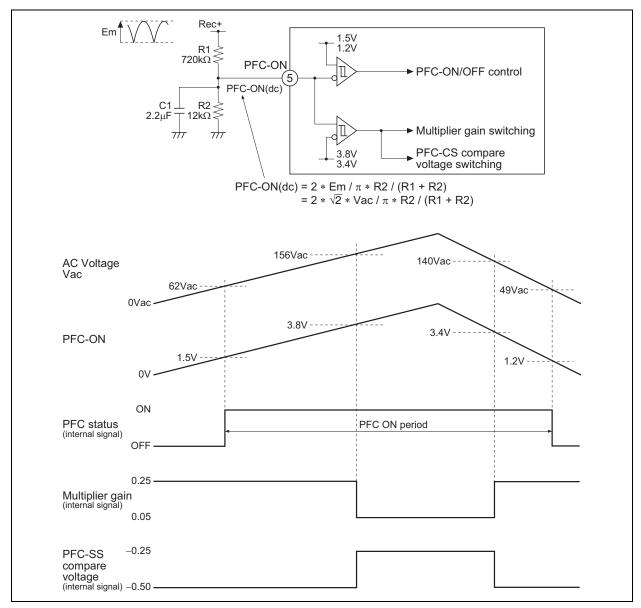


Figure 5

5. Power Saving in Standby State (for PWM Control)

When the output load is light, as in the standby state, the operating frequency of the PWM control section is automatically decreased in order to reduce switching loss.

Standby detection is performed by monitoring the PWM-COMP voltage, and the operating frequency is decreased to a maximum of 1/64 of the reference frequency determined by an external timing resistance.

As standby detection is performed on a reference frequency pulse-by-pulse basis, the frequency varies gently according to the output load.

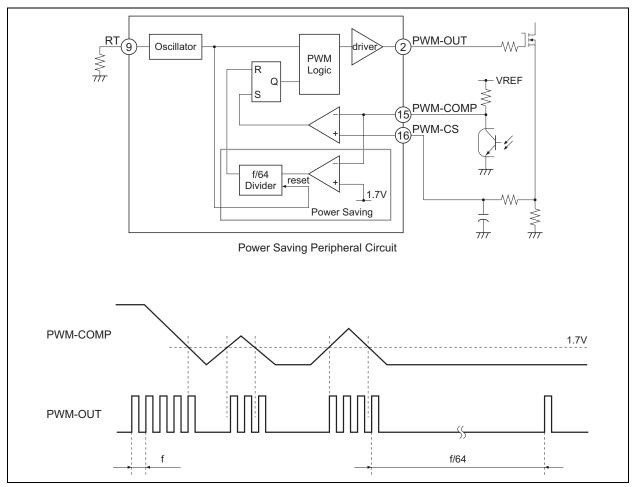


Figure 6

6. Overvoltage Latch Protection (for PWM Control)

This is a protection function that halts PWM-OUT and PFC-OUT if the secondary-side PWM output voltage is abnormally high.

Overvoltage signal input is shared with the PWM-SS pin. When this pin is pulled up to 4.0 V or higher, the control circuit identifies an overvoltage error and halts PWM-OUT and PFC-OUT.

The power supply is turned off, and the latch is released when the VCC voltage falls to 7.1 V or below.

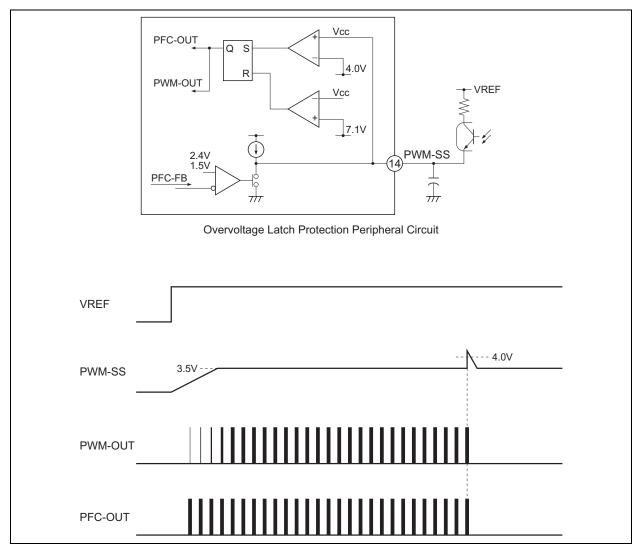


Figure 7

7. Operating Frequency

The operating frequency is adjusted by timing resinstance RT.

Adjustment examples are shown in the graph below. The operating frequency fpwm in the PWM section is determined by the RT. The operating frequency fpfc in the PFC section is half the value of fpwm.

The operating frequency in the PWM section can be estimated using the approximate equation shown below. $RT=200~k\Omega$:

fpwm
$$\approx \frac{2.60 \times 10^{10}}{RT} = 130 \text{ [kHz]}$$

fpfc = $\frac{\text{fpwm}}{2} = 65 \text{ [kHz]}$

This is only an approximate equation, and the higher the frequency, the greater will be the degree of error of the approximate equation due to the effects of the delay time in the internal circuit, etc.

When the operating frequency is adjusted, it is essential to confirm operation using the actual system.

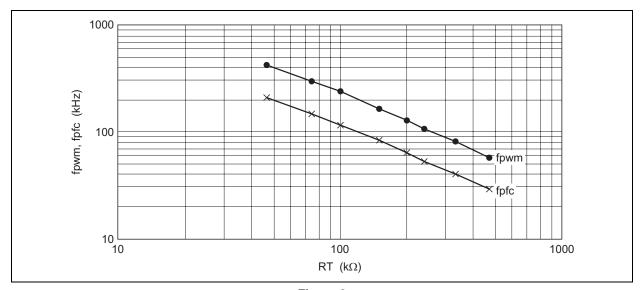
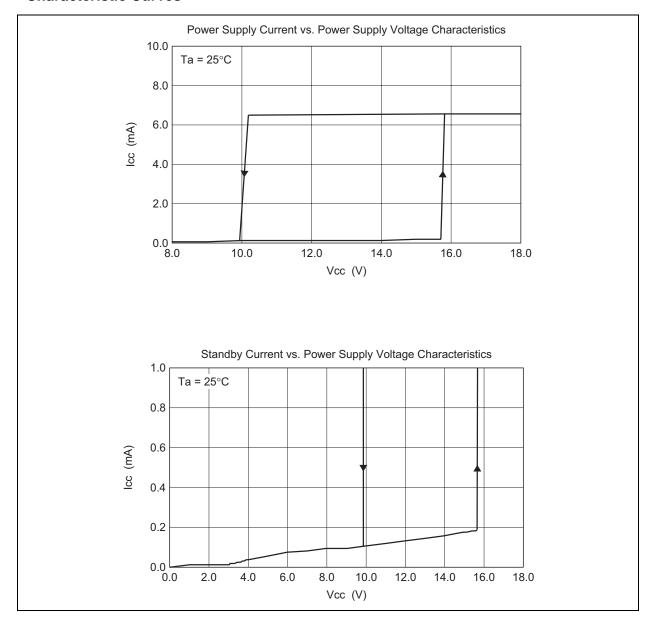
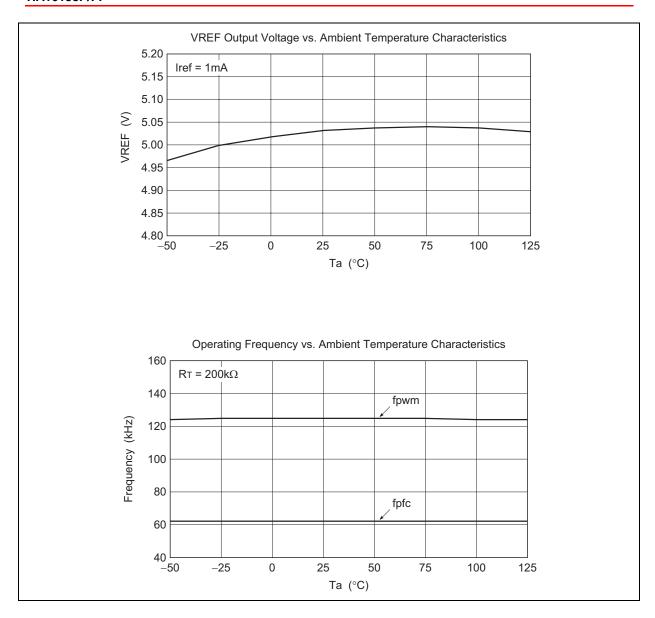
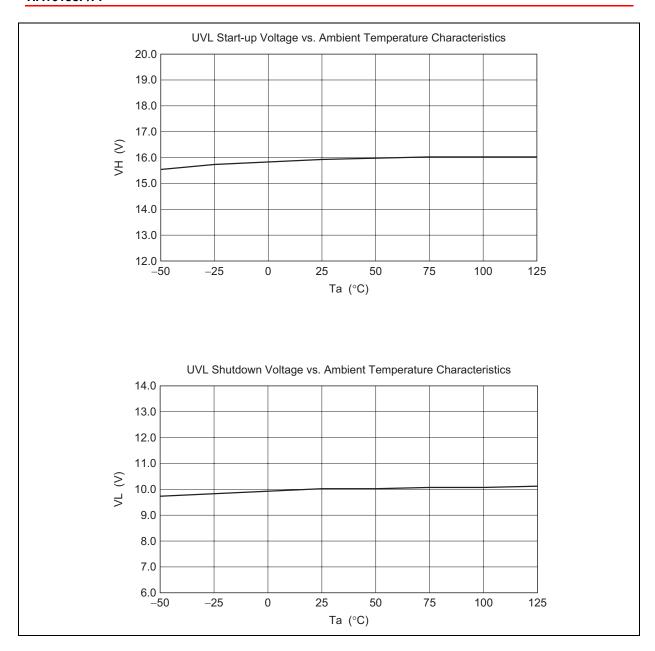
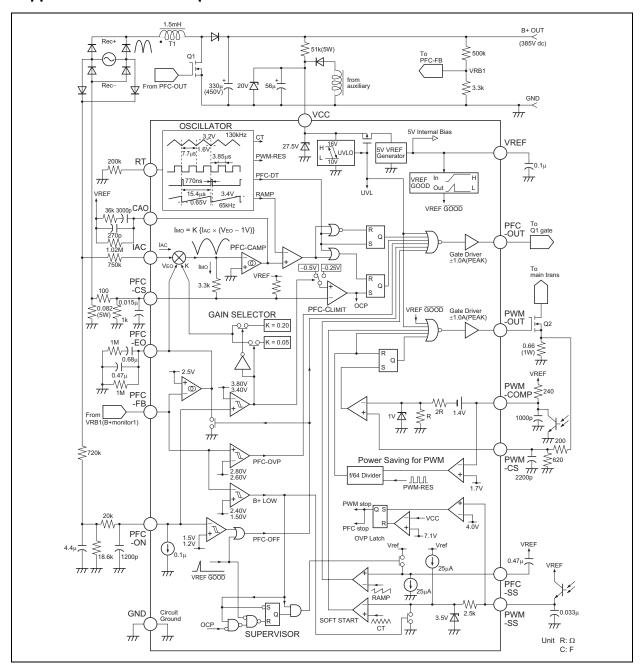
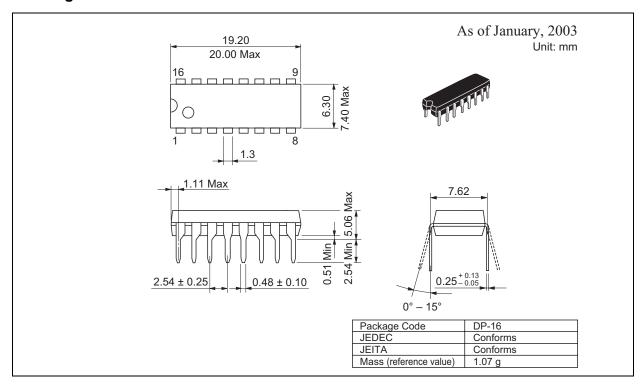
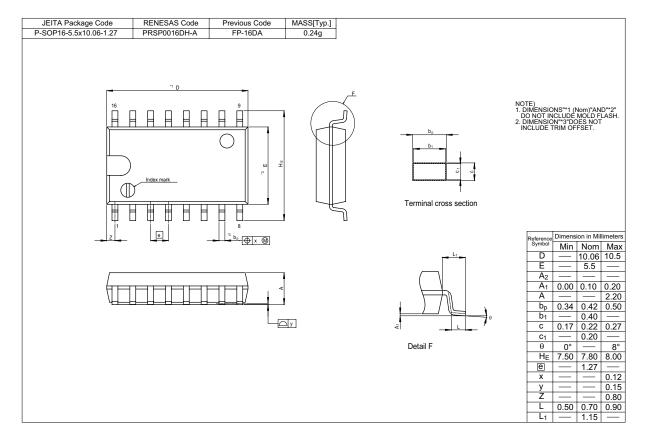





Figure 8


Characteristic Curves





Application Circuit Example

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bidg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. Whis document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas groducts for their use. Renesas neither makes may not be rights or any other rights of rany other rights of ranges or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws destruction to for the purpose of any other military such as a product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information however, is subject to change without any prior notice. Before purchasign or using any Renease spructus isled in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to develope the information in light of the total system before deciding about the applicable of years as such as a such as

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510