

MOS FIELD EFFECT TRANSISTOR μ PA1793

SWITCHING N- AND P-CHANNEL POWER MOS FET

DESCRIPTION

The μ PA1793 is N- and P-Channel MOS Field Effect Transistors designed for Motor Drive application.

FEATURES

• Low on-state resistance

N-Channel RDS(on)1 = 69 m Ω MAX. (Vgs = 4.5 V, ID = 1.5 A)

 $R_{DS(on)2}$ = 72 m Ω MAX. (Vgs = 4.0 V, Ip = 1.5 A)

 $R_{DS(on)3} = 107 \text{ m}\Omega$ MAX. (Vgs = 2.5 V, ID = 1.0 A)

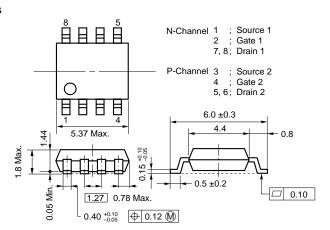
P-Channel RDS(on)1 = 115 m Ω MAX. (VGS = -4.5 V, ID = -1.5 A)

 $R_{DS(on)2} = 120 \text{ m}\Omega$ MAX. (Vgs = -4.0 V, ID = -1.5 A)

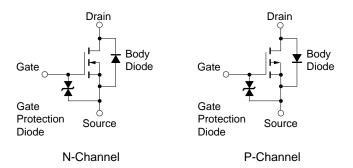
 $R_{DS(on)3} = 190 \text{ m}\Omega \text{ MAX.} (V_{GS} = -2.5 \text{ V}, I_{D} = -1.0 \text{ A})$

Low input capacitance

N-Channel Ciss = 160 pF TYP.


P-Channel Ciss = 370 pF TYP.

- Built-in G-S protection diode
- Small and surface mount package (Power SOP8)


ORDERING INFORMATION

PART NUMBER	PACKAGE
μPA1793G	Power SOP8

PACKAGE DRAWING (Unit: mm)

EQUIVALENT CIRCUIT

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

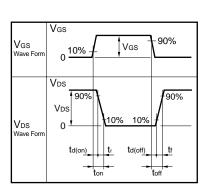
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, All terminals are connected.)

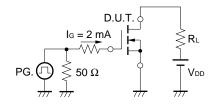
Parameter	Symbol	N-Channel	P-Channel	Unit
Drain to Source Voltage (V _{GS} = 0 V)	VDSS	20	-20	V
Gate to Source Voltage (Vps = 0 V)	Vgss	± 12	∓ 12	V
Drain Current (DC)	I _{D(DC)}	± 3	∓3	Α
Drain Current (pulse) Note1	I _{D(pulse)}	± 12	∓ 12	Α
Total Power Dissipation (1 unit) Note2	Рт	1.	W	
Total Power Dissipation (2 units) Note2	Рт	2	W	
Channel Temperature	Tch	15	°C	
Storage Temperature	T _{stg}	–55 to	°C	

Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1%

2. Mounted on ceramic substrate of 5500 mm² \times 2.2 mm, T_A = 25°C


ELECTRICAL CHARACTERISTICS (TA = 25°C, All terminals are connected.)

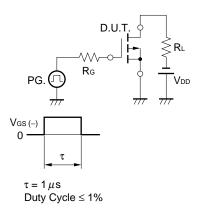
A) N-Channel

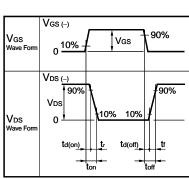

Characteristice	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Zero Gate Voltage Drain Current	Ipss	V _{DS} = 20 V, V _{GS} = 0 V			10	μΑ
Gate Leakage Current	lgss	Vgs = ±12 V, Vps = 0 V			±10	μΑ
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1 mA	0.5	1.0	1.5	V
Forward Transfer Admittance	y fs	V _{DS} = 10 V, I _D =1.5 A	1.0			S
Drain to Source On-state Resistance	RDS(on)1	Vgs = 4.5 V, ID = 1.5 A		55	69	mΩ
	RDS(on)2	Vgs = 4.0 V, ID = 1.5 A		57	72	mΩ
	RDS(on)3	Vgs = 2.5 V, ID = 1.0 A		78	107	mΩ
Input Capacitance	Ciss	V _{DS} = 10 V		160		pF
Output Capacitance	Coss	Vgs = 0 V		60		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		40		pF
Turn-on Delay Time	td(on)	V _{DD} = 10 V, I _D = 1.5 A		17		ns
Rise Time	t r	Vgs = 4.0 V		50		ns
Turn-off Delay Time	td(off)	$R_G = 10 \Omega$		86		ns
Fall Time	tf			80		ns
Total Gate Charge	Q _G	V _{DD} = 16 V		3.1		nC
Gate to Source Charge	Qgs	Vgs = 4.0 V		0.7		nC
Gate to Drain Charge	Q _{GD}	ID = 3.0 A		1.4		nC
Body Diode Forward Voltage	V _{F(S-D)}	IF = 3.0 A, VGS = 0 V		0.86		V
Reverse Recovery Time	trr	IF = 3 A, VGS = 0 V		70		ns
Reverse Recovery Charge	Qrr	$di/dt = 50 \text{ A}/\mu\text{s}$		12		nC

TEST CIRCUIT 1 SWITCHING TIME

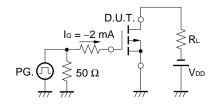
D.U.T. PG. RG RG VDD $\tau = 1 \mu s$ Duty Cycle $\leq 1\%$

TEST CIRCUIT 2 GATE CHARGE

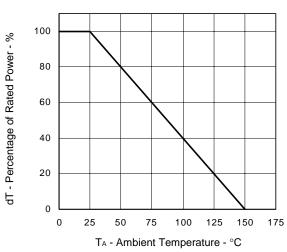


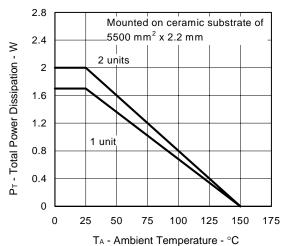


B) P-Channel

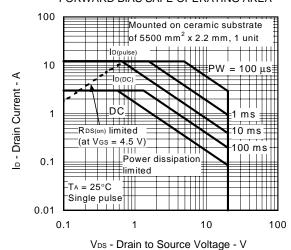

Characteristics	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Zero Gate Voltage Drain Current	Idss	V _{DS} = -20 V, V _{GS} = 0 V			-10	μΑ
Gate Leakage Current	Igss	V _G S = ∓ 12 V, V _D S = 0 V			∓10	μΑ
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = -10 V, I _D = -1 mA	-0.5	-1.0	-1.5	V
Forward Transfer Admittance	yfs	V _{DS} = -10 V, I _D = -1.5 A	1.0			S
Drain to Source On-state Resistance	RDS(on)1	Vgs = -4.5 V, ID = -1.5 A		75	115	mΩ
	RDS(on)2	V _G S = -4.0 V, I _D = -1.5 A		80	120	mΩ
	RDS(on)3	Vgs = -2.5 V, ID = -1.0 A		116	190	mΩ
Input Capacitance	Ciss	V _{DS} = -10 V		370		pF
Output Capacitance	Coss	Vgs = 0 V		110		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		40		pF
Turn-on Delay Time	t d(on)	V _{DD} = -10 V, I _D = -1.5 A		120		ns
Rise Time	tr	V _G S = -4.0 V		260		ns
Turn-off Delay Time	t d(off)	$R_G = 10 \Omega$		410		ns
Fall Time	tf			360		ns
Total Gate Charge	Qg	V _{DD} = -10 V		3.4		nC
Gate to Source Charge	Qgs	V _G S = -4.0 V		1.3		nC
Gate to Drain Charge	Q _{GD}	I _D = -3.0 A		1.6		nC
Body Diode Forward Voltage	V _{F(S-D)}	IF = 3.0 A, VGS = 0 V		0.86		V
Reverse Recovery Time	trr	IF = 3 A, VGS = 0 V		24		ns
Reverse Recovery Charge	Qrr	$di/dt = 10 A/\mu s$		1.5		nC

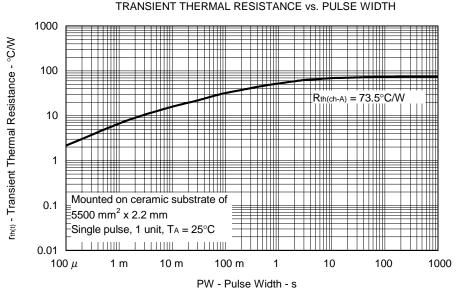
TEST CIRCUIT 1 SWITCHING TIME


TEST CIRCUIT 2 GATE CHARGE

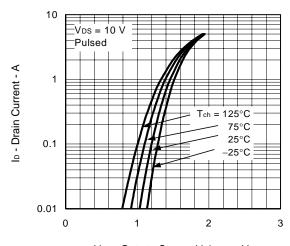

TYPICAL CHARACTERISTICS (TA = 25°C)

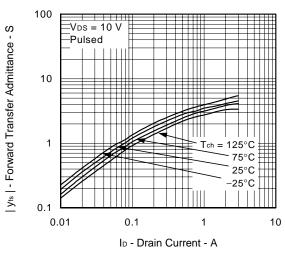
A) N-Channel


DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

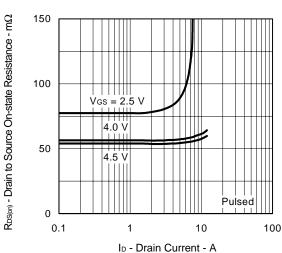

TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

FORWARD BIAS SAFE OPERATING AREA

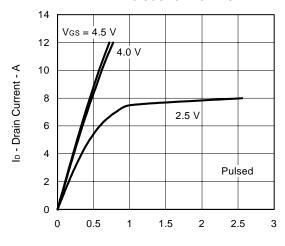



A) N-Channel

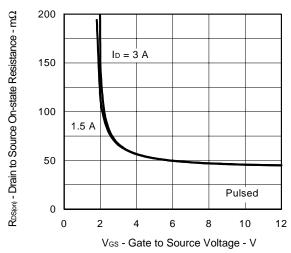
FORWARD TRANSFER CHARACTERISTICS



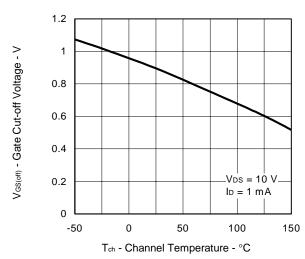
V_{GS} - Gate to Source Voltage - V


FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT

DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

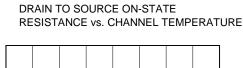


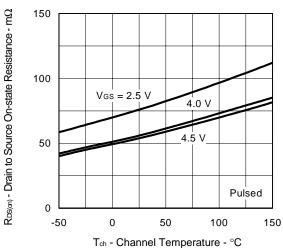
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

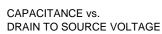


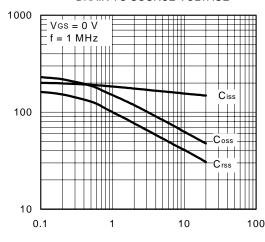
V_{DS} - Drain to Source Voltage - V

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

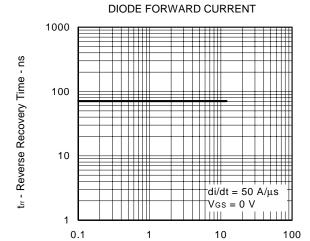


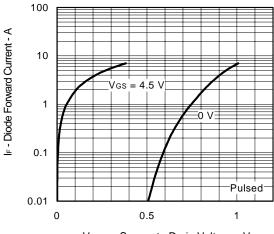

GATE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE



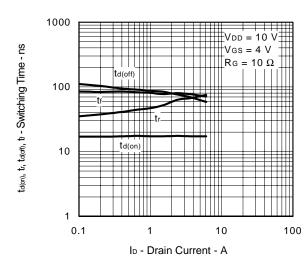

Ciss, Coss, Crss - Capacitance - pF

A) N-Channel

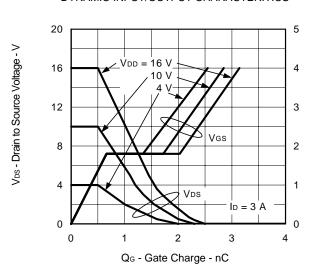




V_{DS} - Drain to Source Voltage - V REVERSE RECOVERY TIME vs.

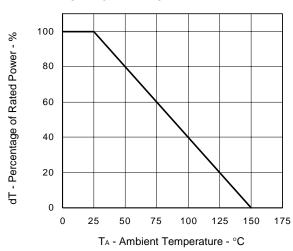

IF - Diode Forward Current - A

SOURCE TO DRAIN DIODE FORWARD VOLTAGE

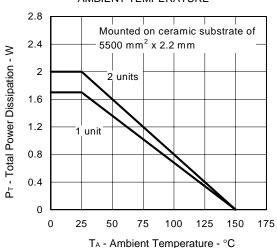


 $V_{F(S\text{-}D)}$ - Source to Drain Voltage - V

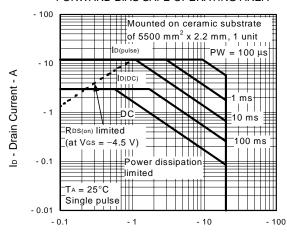
SWITCHING CHARACTERISTICS



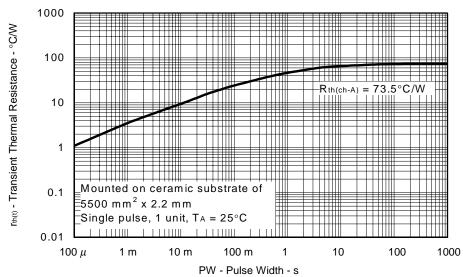
DYNAMIC INPUT/OUTPUT CHARACTERITICS



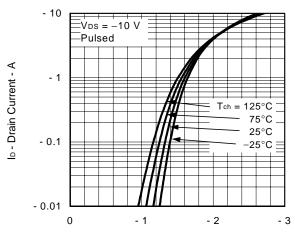
B) P-Channel


DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

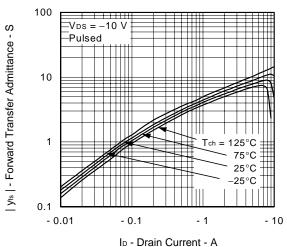
TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE



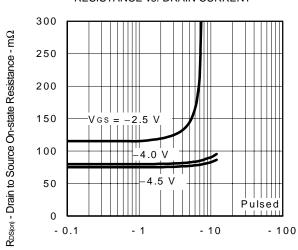
FORWARD BIAS SAFE OPERATING AREA


$\ensuremath{\mathsf{V}}_\text{DS}$ - Drain to Source Voltage - $\ensuremath{\mathsf{V}}$

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

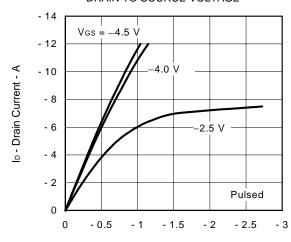

B) P-Channel

FORWARD TRANSFER CHARACTERISTICS

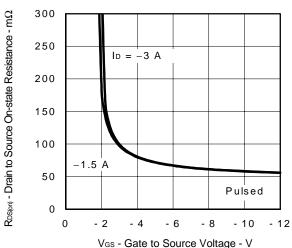


V_{GS} - Gate to Source Voltage - V

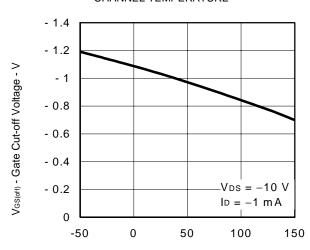
FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT



DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

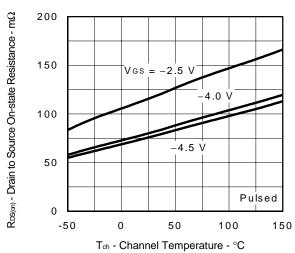

ID - Drain Current - A

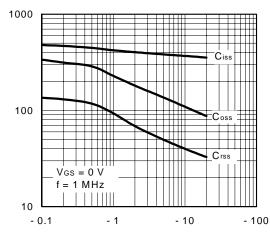
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE



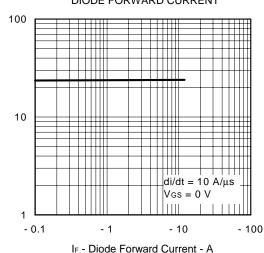
V_{DS} - Drain to Source Voltage - V

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

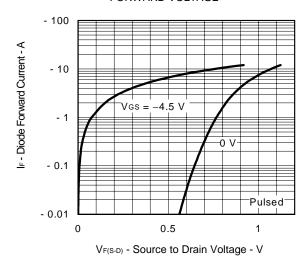

GATE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE


Tch - Channel Temperature - °C

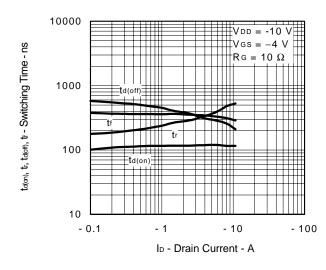
) P-Channel

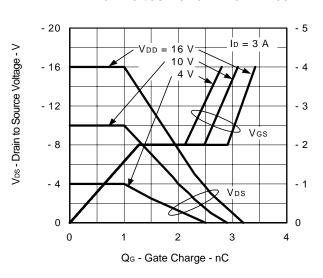


CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE



V_{DS} - Drain to Source Voltage - V


REVERSE RECOVERY TIME vs. DIODE FORWARD CURRENT


SOURCE TO DRAIN DIODE FORWARD VOLTAGE

SWITCHING CHARACTERISTICS

DYNAMIC INPUT/OUTPUT CHARACTERITICS

Ves - Gate to Source Voltage - V

tr - Reverse Recovery Time - ns

Ciss, Coss, Crss - Capacitance - pF

μ**PA1793**

[MEMO]

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4