

HA16141P/FP, HA16142P/FP

PFC and PWM Controller

REJ03F0145-0500

(Previous: ADE-204-036D) Rev.5.00

Jun 15, 2005

Description

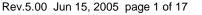
The HA16141P/FP and the HA16142P/FP are power supply controller ICs combining an AC-DC converter switching controllers for power factor correction and off-line power supply switching controllers. PFC (Power factor correction) section employs average current mode PWM and off-line power supply control section employs peak current mode PWM.

The HA16142P/FP is the change version of HA16141P/FP's PWM maximum on duty cycle.

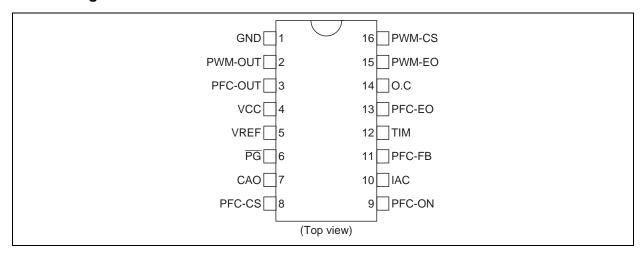
The PFC operation can be turned on and off by external control signal. Use of this on/off function makes it possible to disable PFC operation at a low line voltage, or to perform remote control operation from the transformer secondary side. The PFC power supply boosted output voltage is not only fed to an error amplifier input signal but also fed to as the boost voltage monitor circuit. \overline{PG} signal is put out if the boost voltage is out-of-spec.

The PWM controller, which begins operation at the same time as release of the IC's UVLO (under-voltage lockout) is suitable for auxiliary power supply use in a multi-output power supply system.

Features

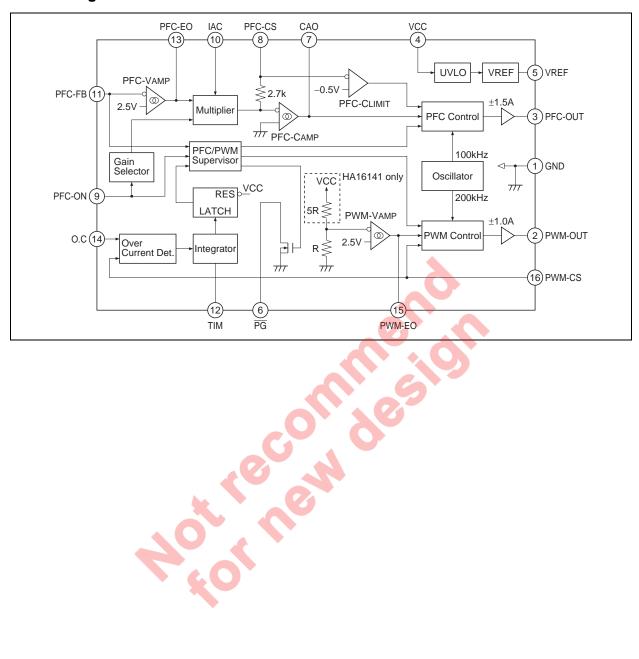

- Synchronized PFC and PWM timing
- Self oscillation with fixed frequency PFC : 100 kHz (±15 %)

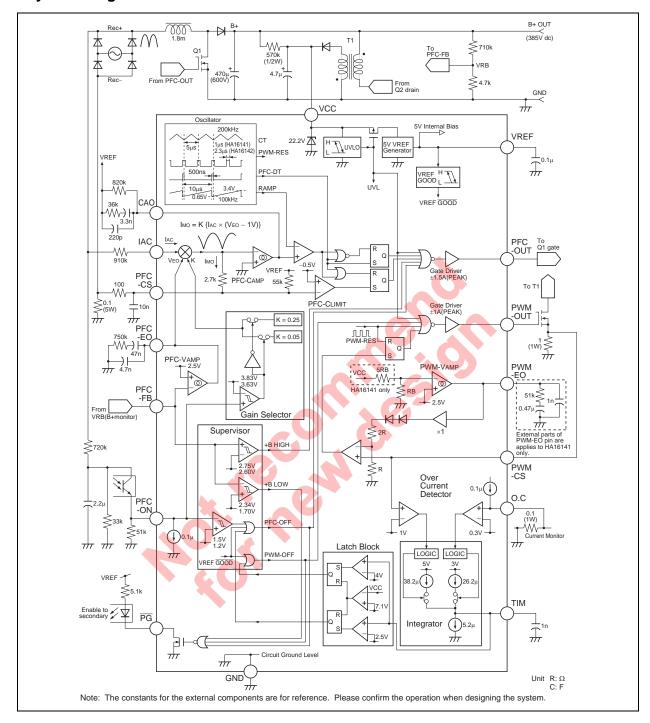
PWM : 200 kHz (±15 %)


- PFC function on/off control
- PFC boosted output voltage monitor
- High-output current gate drivers
 PFC driver peak current :±1.5 A typ.

PWM driver peak current : ±1.0 A typ.

PWM maximum on duty cycle
 72% min (HA16141P/FP)
 49.5% max (HA16142P/FP)

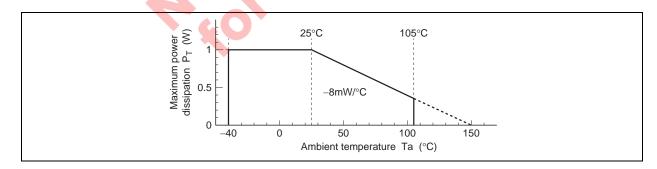

Pin Arrangement


Pin Description

Pin No.	Symbol	Function
1	GND	Ground
2	PWM-OUT	Power MOS FET driver output (PWM control)
3	PFC-OUT	Power MOS FET driver output (PFC control)
4	VCC	Supply voltage
5	VREF	Reference voltage
6	PG	Power Good signal output (open-drain output)
7	CAO	Average current control error amp. output
8	PFC-CS	PFC control current sense signal input
9	PFC-ON	PFC function on/off signal input
10	IAC	Multiplier reference current input
11	PFC-FB	PFC control error amp. input
12	TIM	Overcurrent timer time setting
13	PFC-EO	PFC control error amp. output
14	O.C	Overcurrent detector signal input
15	PWM-EO	PWM control error amp. output (photocoupler input also possible) (HA16141 only)
		PWM control feedback voltage signal input (HA16142 only)
16	PWM-CS	PWM control current sense signal input

Block Diagram

System Diagram


Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Rating	Unit	Note
Supply voltage	V _{CC}	20	V	
Peak PFC-OUT current	lpk-pfc	±1.5	А	3
Peak PWM-OUT current	lpk-pwm	±1.0	А	3
DC PFC-OUT current	ldc-pfc	±0.15	А	
DC PWM-OUT current	ldc-pwm	±0.10	А	
Terminal voltage	Vi-group1	−0.3 to V _{CC}	V	4
	Vi-group2	-0.3 to Vref	V	5
CAO voltage	Vcao	-0.3 to Veoh-ca	V	
PFC-EO voltage	Vpfc-eo	-0.3 to Veoh-pfc	V	
PWM-EO voltage	Vpwm-eo	-0.3 to Veoh-pwm	V	
PFC-ON voltage	Vpfc-on	-0.3 to +7	V	
IAC voltage	Vi-ac	-0.3 to +5	V	
IAC current	li-ac	0.8	mA	
PFC-CS voltage	Vi-cs	-1.5 to +0.3	V	
TIM voltage	Vi-tim	-0.3 to +6	V	
VREF current	lo-ref	-20	mA	
PG voltage	Vo-pg	-0.3 to +7	V	
PG current	lo-pg	15	mA	
Power dissipation	P _T	1	W	6
Operating temperature	Topr	-40 to +105	°C	
Storage temperature	Tstg	-55 to +150	°C	
Junction temperature	Tj	150	°C	

Notes: 1. Rated voltages are with reference to the GND pin.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. Group1 is the rated voltage for the following pins: PFC-OUT, PWM-OUT
- 5. Group2 is the rated voltage for the following pins: VREF, PFC-FB, PWM-CS
- 6. This is the value when the ambient temperature (Ta) is 25°C or below. If Ta exceeds 25°C, the graph below applies. For the SOP package, this value is based on actual measurements on a 10% wiring density glass epoxy circuit board (40 mm × 40 mm × 1.6 mm).

Electrical Characteristics

 $(Ta = 25^{\circ}C, V_{CC} = 14 V)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Supply	Start threshold	V _H	12.2	13.0	13.8	V	
	Shutdown threshold	V _L	9.4	10.0	10.6	V	
	UVLO hysteresis	dV_{UVL}	2.6	3.0	3.4	V	
	Start-up current	Is	150	200	300	μΑ	V _{CC} = 12V
	Is temperature stability	dl _S /dTa	-	-0.3	-	%/°C	*1
	Operating current	Icc	4	7	9	mA	IAC = 100μ A, $C_L = 0$ F
	Latch current	I _{LATCH}	230	310	375	μΑ	V _{CC} = 9V
	Shunt zener voltage	Vz	21.2	22.2	23.2	V	I _{CC} = 14mA
	Vz temperature stability	dV _z /dTa	_	+4	-	mV/°C	I _{CC} = 14mA * ¹
PFC-OUT	Minimum duty cycle	Dmin-pfc	_	ı	0	%	CAO = 3.6V
	Maximum duty cycle	Dmax-pfc	90	95	98	%	CAO = 0V
	Rise time	t _r -pfc	-	30	100	ns	C _L = 1000p
	Fall time	t _f -pfc	_	30	100	ns	C _L = 1000p
	Peak current	lpk-pfc	-	1.5	-	Α	$C_L = 0.01 \mu F^{*1}$
	Low voltage	Vol1-pfc	-	0.05	0.2	V	lout = 20mA
		Vol2-pfc	-	0.35	1.4	V	lout = 200mA
		Vol3-pfc	-	0.03	0.7	V	lout = $10mA$, $V_{CC} = 5V$
	High voltage	Voh1-pfc	13.5	13.9	*	V	lout = -20mA
		Voh2-pfc	12.6	13.3	-	V	lout = -200mA
PWM-OUT	Minimum duty cycle	Dmin-pwm	-	_	0	%	PWM-EO = 1.3V
				A 6			PWM-CS = 0V
	Maximum duty cycle	Dmax-pwm	72	80	88	%	PWM-EO = 5V
							PWM-CS = 0V *2
			42.5	46	49.5	%	PWM-EO = 5V
							PWM-CS = 0V *3
	Rise time	t _r -pwm	-	30	100	ns	C _L = 1000p
	Fall time	t _f -pwm	-	30	100	ns	C _L = 1000p
	Peak current	lpk-pwm	-	1.0	_	Α	$C_L = 0.01 \mu F^{*1}$
	Low voltage	Vol1-pwm		0.05	0.2	V	lout = 20mA
		Vol2-pwm	_	0.5	2.0	V	lout = 200mA
		Vol3-pwm	-	0.03	0.7	V	lout = 10mA, $V_{CC} = 5V$
	High voltage	Voh1-pwm	13.5	13.9	_	V	lout = -20mA
		Voh2-pwm	12.0	13.0	_	V	lout = -200mA
VREF	Output voltage	Vref	4.9	5.0	5.1	V	Isource = 1mA
	Line regulation	Vref-line	-	5	20	mV	Isource = 1mA V _{CC} = 12V to 18V
	Load regulation	Vref-load	_	5	20	mV	Isource = 1mA to 20mA
	Temperature stability	dVref	_	80	_	ppm/°C	Ta = $-40 \text{ to } 105^{\circ}\text{C}^{*1}$

Notes: 1. Design spec.

2. Apply to HA16141.

3. Apply to HA16142.

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, V_{CC} = 14 V)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Oscillator	Initial accuracy	fpwm	170	200	230	kHz	Measured pin: PWM-OUT
		fpfc	85	100	115	kHz	Measured pin: PFC-OUT
	fpwm temperature stability	dfpwm/dTa	_	±0.1	_	%/°C	Ta = -40 to 105° C * ¹
	fpwm voltage stability	fpwm(line)	-1.5	+0.5	+1.5	%	V _{CC} = 12V to 18V
	Ramp peak voltage	Vramp-H	-	3.4	3.6	V	
	Ramp valley volatge	Vramp-L	-	0.65	-	V	*1
PFC-ON	PFC on voltage	Von-pfc	1.3	1.5	1.7	V	
	PFC off voltage	Voff-pfc	1.0	1.2	1.4	V	
	PFC on-off hysteresis	dVon-off	0.15	0.30	0.45	V	
	Input current	Ipfc-on	-	0.1	1.0	μΑ	PFC-ON = 2V
Supervisor/ PG	PFC GOOD threshold voltage	Vb-good	2.29	2.34	2.39	V	Input pin: PFC-FB
	PFC FAIL threshold voltage	Vb-fail	1.66	1.70	1.74	V	Input pin: PFC-FB
	+B High PFC inhibit voltage	Vb-h	2.69	2.75	2.81	V	Input pin: PFC-FB
	+B High PFC restart voltage	Vb-res	2.54	2.60	2.66	V	Input pin: PFC-FB
	PG leak current	loff-pg		0.001	1.0	μA	PG = 5V
	PG shunt current	lon-pg	5	15	/ -	mA	PG = 3V *2
	Delay to PG	tg-pg		0.2	1	μs	Step signal (5 to 0V) to PFC-ON
O.C	O.C threshold voltage	Voc	0.27	0.30	0.33	V	
(Over Current	PWM-CS threshold voltage	Vcs	0.9	1.0	1.1	V	
Detector)	O.C input current	loc	77	-0.1	-1.0	μΑ	O.C = 0V
Integrator	Sink current	Isnk-tim	3.9	5.2	6.5	μΑ	TIM = 2V
	Source current O.C trigger	Isrc-tim1	-16	-21	-26	μΑ	TIM = 2V, O.C = 0.5V *1
	Source Current PWM-CS trigger	Isrc-tim2	-25	-33	-41	μΑ	TIM = 2V, PWM-CS = 2V
	Integrated time O.C trigger	t-tim1	88	110	132	μs	Step signal (0 to 1V) to O.C, Ctim = 1000p, Measured pin: \overline{PG}
	Integrated Time PWM-CS trigger	t-tim2	53	67	81	μs	Step signal (0 to 2V) to PWM-CS, Ctim = 1000p, Measured pin: \overline{PG}

Notes: 1. Design spec.

2. Maximum rating of PG current is 15 mA. Use series resistor to limit PG current lower than 15 mA.

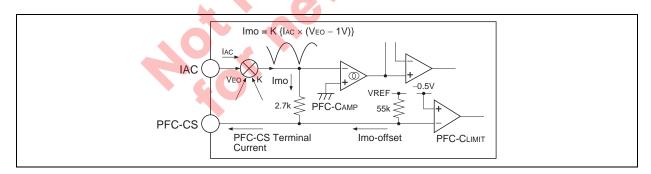
Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, V_{CC} = 14 V)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Latch	Threshold voltage for PFC stop	Vlch-pfc	2.4	2.5	2.6	V	Input pin: TIM
	Threshold Voltage for PWM stop	Vlch-sys	3.8	4.0	4.2	V	Input pin: TIM
	Latch Reset Voltage	Vcc-res	6.1	7.1	8.1	V	
PWM-V _{AMP}	Feedback V _{CC} voltage	Vfb-pwm	14.2	14.8	15.4	V	PWM-EO = 2.5V *2
	Open loop gain	Av-pwm	_	45	-	dB	*1, *2
	High voltage	Veoh-pwm	5.1	5.7	6.3	V	V _{CC} = 14V, PWM-EO: Open
	Low voltage	Veol-pwm	-	0.1	0.3	٧	V _{CC} = 16V, PWM-EO: Open * ²
	Source current	Isrc-pwm	_	-77	-	μΑ	*1 V _{CC} = 11V
	Sink current	Isnk-pwm	_	77	-	μΑ	*1 V _{CC} = 18V *2
	Transconductance respect to V _{CC}	Gm-pwm	19	27	35	μA/V	$V_{CC} = 15V$, PWM-EO = 2.5V * ²
PWM current sense	Delay to output	td-cs	_	210	300	ns	PWM-EO = 5V, PWM-CS = 0 to 2V
PFC current	Threshold voltage	V _{LM}	-0.47	-0.50	-0.53	V	
limit	Delay to output	td- _{LM}	-	280	500	ns	PFC-CS = 0 to -1V
PFC-V _{AMP}	Feedback voltage	Vfb-pfc	2.45	2.50	2.55	V	PFC-EO = 2.5V
	Input bias current	lfb-pfc	-0.30	-0.07	+0.30	μΑ	Measured pin: PFC-FB
	Open loop gain	Av-pfc	_	65	_	dB	*1
	High voltage	Veoh-pfc	5.1	5.7	6.3	V	PFC-FB = 2.3V, PFC-EO: Open
	Low voltage	Veol-pfc	N	0.1	0.3	V	PFC-FB = 2.7V, PFC-EO: Open
	Source current	Isrc-pfc	-62	-77	-93	μΑ	PFC-FB = 1.0V, PFC-EO = 2.5V
	Sink current	Isnk-pfc	62	77	93	μΑ	PFC-FB = 4.0V, PFC-EO = 2.5V
	Transconductance	Gm-pfcv	120	160	200	μA/V	PFC-FB = 2.5V, PFC-EO = 2.5V

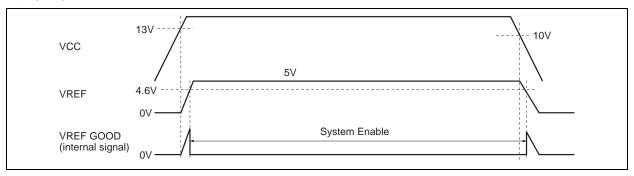
Notes: 1. Design spec.

2. Apply to HA16141.

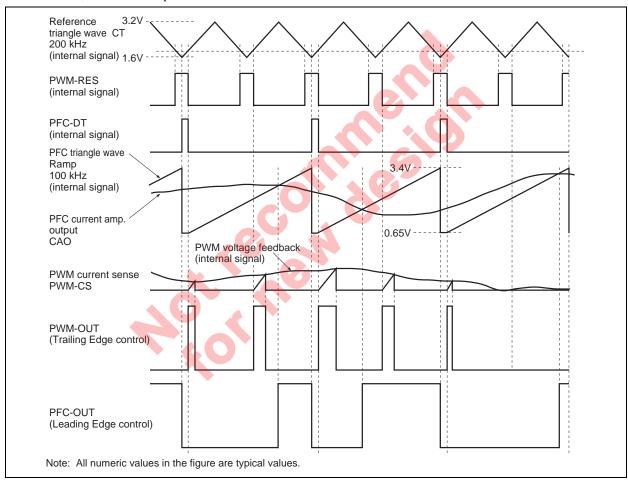

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, V_{CC} = 14 V)$

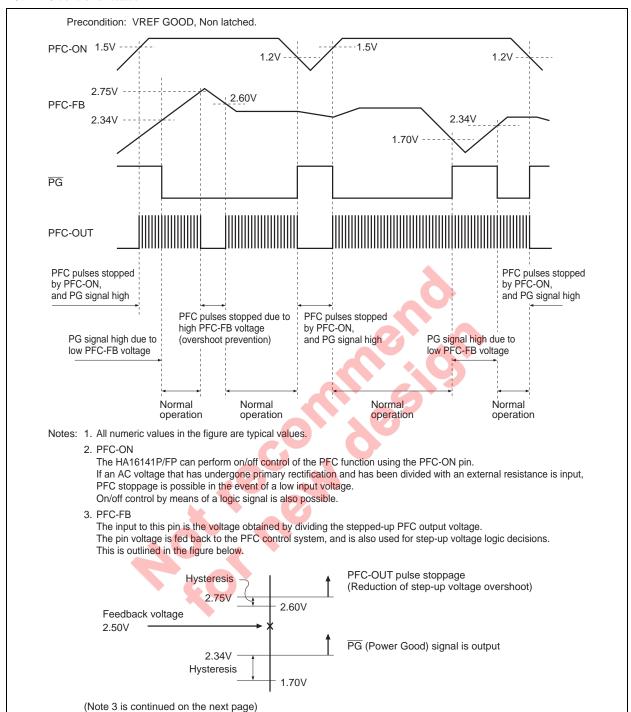
Item		Symbol	Min	Тур	Max	Unit	Test Conditions
PFC-CAMP	Input offset voltage	Vio-ca	_	±7	_	mV	*1
	Open loop gain	Av-ca	_	65	_	dB	*1
	High voltage	Veoh-ca	5.1	5.7	6.3	V	
	Low voltage	Veol-ca	_	0.1	0.3	V	
	Source current	Isrc-ca	-	-77	_	μΑ	CAO = 2.5V *1
	Sink current	Isnk-ca	-	77	_	μΑ	CAO = 2.5V *1
	Transconductance	Gm-pfcc	120	160	200	μΑ/V	* 1
IAC/	IAC PIN voltage	Viac	0.7	1.0	1.3	V	IAC = 100μA
Multiplier	Terminal offset current	Imo-offset	- 56	- 75	-94	μΑ	IAC = 0A, PFC-CS = 0V, Measured pin: PFC-CS
	Output current (PFC-ON = 3.4V)	lmo1	_	-25	-	μΑ	PFC-EO = 2V, IAC = 100μA * ^{1, *2}
		lmo2	_	-75	-	μΑ	PFC-EO = 4V, IAC = $100\mu A^{*1, *2}$
	Output current (PFC-ON = 3.9V)	Imo3	_	- 5	~	μΑ	PFC-EO = 2V, IAC = 100μA * ^{1, *2}
		Imo4	_	-15	\	μА	PFC-EO = 4V, IAC = 100μA * ^{1, *2}
	PFC-CS resistance	Rmo	-	2.7	-	kΩ	*1
Gain selector	Threshold voltage for K = 0.05	V _{K-Н}	3.71	3.83	3.95	V	
	Threshold voltage for K = 0.25	V _{K-L}	3.51	3.63	3.75	V	
	V _K hysteresis voltage	dVκ	0.15	0.20	0.25	V	*1


Notes: 1. Design spec.

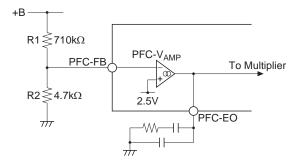
2. Imo1 to Imo4 are defined as, Imo = (PFC-CS Terminal Current) - (Imo-offset)

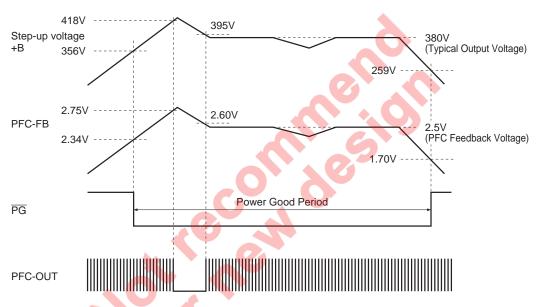


Internal Timing


1. UVLO

2. Oscillator, Gate driver output

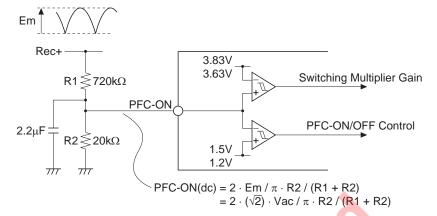

3. PFC controller status


3. PFC controller status (cont.)

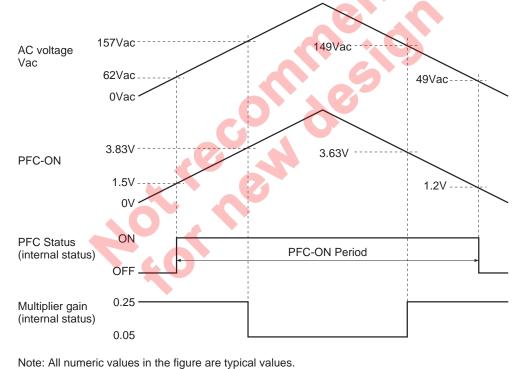
Notes: 3. PFC-FB (cont.)

The actual input voltage to the PFC-FB pin is the step-up voltage divided with a resistance (see figure below). If R1 is set as 710 k Ω and R2 as 4.7 k Ω , the decision voltage at the step-up pin (+B) is as shown in the figure below.

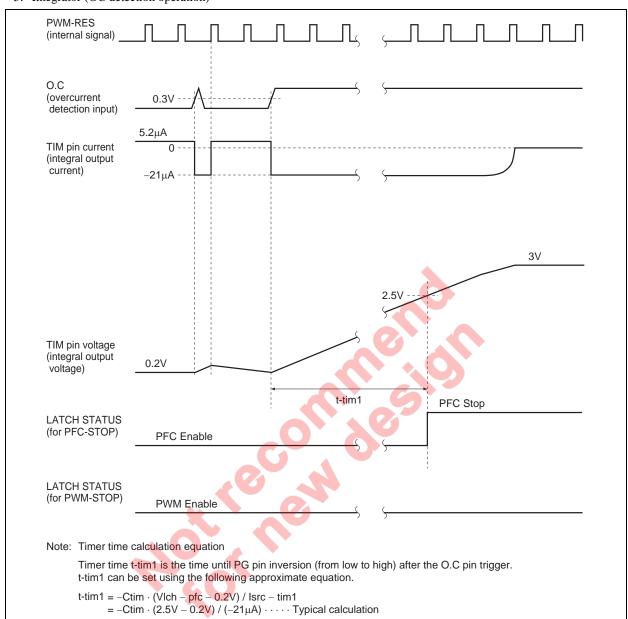
Precondition: VREF GOOD, PFC-ON, Non latched.

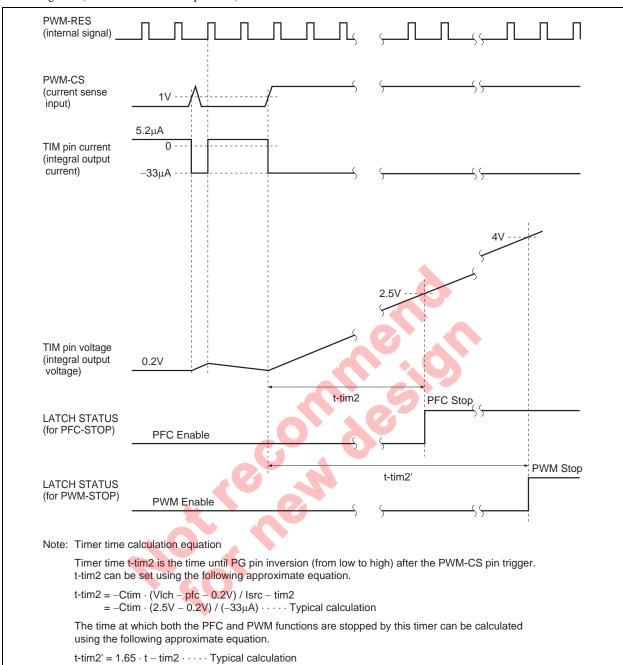


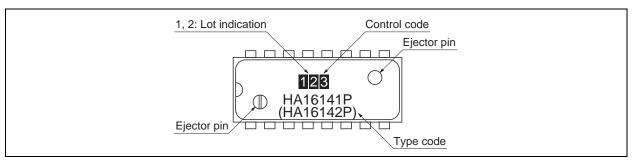
Notes: 4. All numeric values in the figure are typical values.


4. PFC-ON pin

The following functions are effected by inputting an AC voltage that has undergone primary rectification and has been divided with an external resistance to the PFC-ON pin (see figure below).


- a) Turning PFC operation off when AC voltage is low
- b) Switching multiplier gain with AC 100 V system and 200 V system input

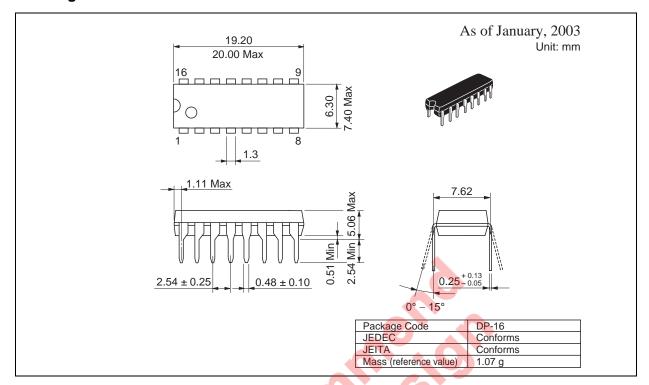

Precondition: VREF GOOD, Non latched.

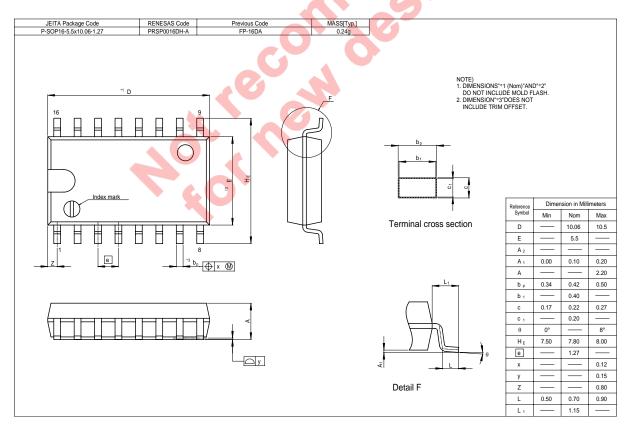

5. Integrator (OC detection operation)

6. Integrator (PWM-CS detection operation)

Mark Pattern

Notes: 1. Example of lot indication.


For example, a product manufactured in May 2000 has the markings "0E" in positions 1 2 in the above figure.


Produ	uction	Indication			
Month	Year	1	2		
May	2000	0	Е		
		<u></u>	1		

									- 4			
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	Α	В	С	D	Е	F	G	Н	J	K	L	М
Laser mark				5				0				, vi

2. Laser marking is used.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- (ii) use of nonlitammable materials or (iii) prevention against any malfunction or mishap.

 Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp, without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp, or an authorized Renesas Technology Corp, product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp, assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp, by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information as a total system before making a final decision on the applicability of the information as a total system before making a final decision on the applicability of the information as a total syst

- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.

Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001