

AO8818

Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor

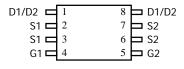
General Description

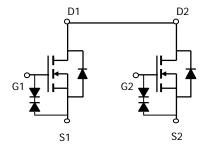
The AO8818 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V while retaining a 12V $V_{\rm GS(MAX)}$ rating. It is ESD protected. This device is suitable for use as a uni-directional or bidirectional load switch, facilitated by its common-drain configuration. Standard Product AO8818 is Pb-free (meets ROHS & Sony 259 specifications). AO8818L is a Green Product ordering option. AO8818 and AO8818L are electrically identical.

Features

 $V_{DS}(V) = 30V$

 $I_D = 7A \ (V_{GS} = 10V)$


 $R_{DS(ON)}$ < 18m Ω (V_{GS} = 10V)


 $R_{DS(ON)} < 20m\Omega (V_{GS} = 4.5V)$

 $R_{DS(ON)}$ < 27m Ω (V_{GS} = 2.5V)

ESD Rating: 1500V HBM

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V_{DS}	30	V			
Gate-Source Voltage		V_{GS}	±12	V			
Continuous Drain	T _A =25°C		7				
Current ^A	T _A =70°C	I_{D}	5.5	Α			
Pulsed Drain Current ^B		I _{DM}	30				
	T _A =25°C	В	1.5	W			
Power Dissipation ^A	T _A =70°C	$-P_{D}$	0.96]			
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	64	83	°C/W			
Maximum Junction-to-Ambient A	Steady-State	$R_{ heta JA}$	89	120	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	53	70	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =24V, V_{GS} =0V	V _{DS} =24V, V _{GS} =0V			1	^
			T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±10V	V _{DS} =0V, V _{GS} =±10V			10	μΑ
BV_{GSO}	Gate-Source Breakdown Voltage	V _{DS} =0V, I _G =±250uA		±12			V
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$		0.6	0.94	1.5	V
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =7A			15	18	mΩ
			T _J =125°C		21	25	
		V_{GS} =4.5V, I_D =5A			17	20	mΩ
		V_{GS} =2.5V, I_D =4A			22	27	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =7A			45		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.74	1	V
Is	Maximum Body-Diode Continuous Currer	ent				2.5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			880	1060	pF
Coss	Output Capacitance				130		pF
C _{rss}	Reverse Transfer Capacitance				90		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.3	2	Ω
SWITCHI	NG PARAMETERS		•		•		
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =7A			11.6	14	nC
Q_{gs}	Gate Source Charge				1.9		nC
Q_{gd}	Gate Drain Charge				4.6		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =5V, V_{DS} =15V, R_L =2.2 Ω , R_{GEN} =3 Ω			8.7		ns
t _r	Turn-On Rise Time				13.7		ns
t _{D(off)}	Turn-Off DelayTime				36		ns
t _f	Turn-Off Fall Time				11		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =7A, dI/dt=100A/μs			16	20	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =7A, dI/dt=100A/μs			7.7		nC

A: The value of $R_{\theta,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

Rev 1: Aug 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

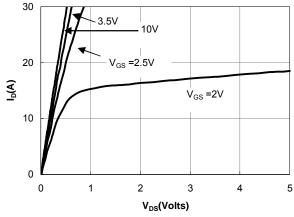


Figure 1: On-Regions Characteristics

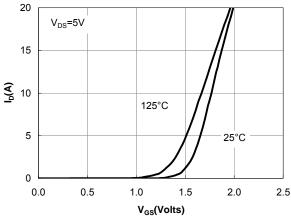


Figure 2: Transfer Characteristics

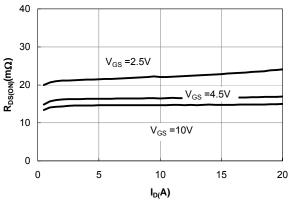


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

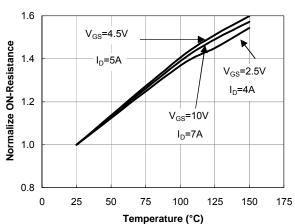
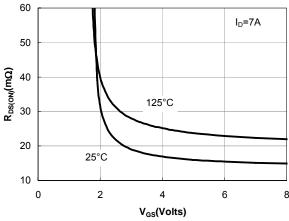
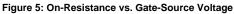




Figure 4: On-Resistance vs. Junction Temperature

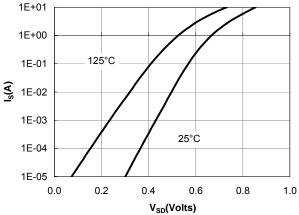
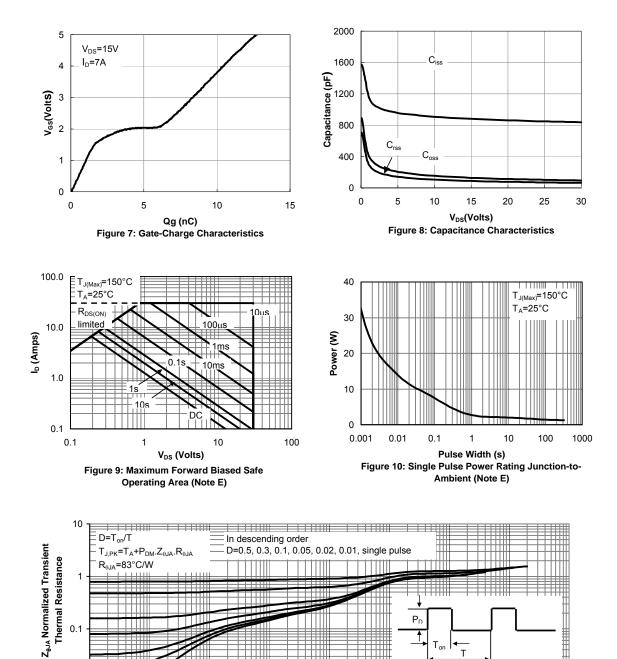



Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance

0.1

1

10

100

1000

0.0001

0.001

0.01

0.01 + 0.00001