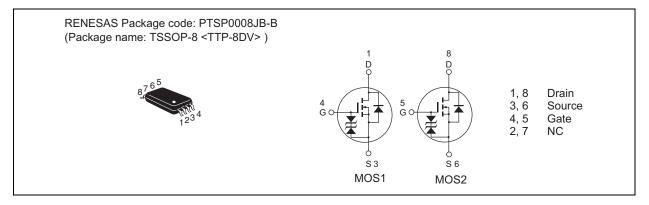
# RENESAS

# HAT2105T


Silicon N Channel MOS FET High Speed Power Switching

> REJ03G0384-0200 Rev.2.00 Aug 06, 2007

## Features

- Low on-resistance
- Capable of 4 V gate drive
- High density mounting

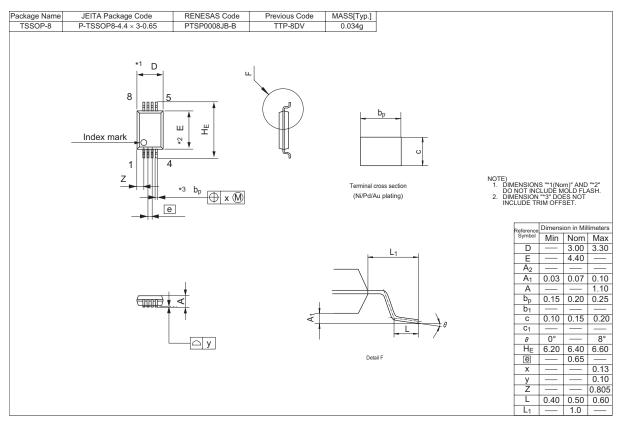
# Outline



# **Absolute Maximum Ratings**

|                                        |                                         |             | $(Ta = 25^{\circ}C)$ |
|----------------------------------------|-----------------------------------------|-------------|----------------------|
| Item                                   | Symbol                                  | Ratings     | Unit                 |
| Drain to source voltage                | V <sub>DSS</sub>                        | 200         | V                    |
| Gate to source voltage                 | V <sub>GSS</sub>                        | ±15         | V                    |
| Drain current                          | ID                                      | 0.5         | A                    |
| Drain peak current                     | I <sub>D</sub> (pulse) <sup>Note1</sup> | 2           | A                    |
| Body-drain diode reverse drain current | I <sub>DR</sub>                         | 0.5         | A                    |
| Channel dissipation                    | Pch <sup>Note 2</sup>                   | 1           | W                    |
|                                        | Pch <sup>Note 3</sup>                   | 1.5         | W                    |
| Channel temperature                    | Tch                                     | 150         | °C                   |
| Storage temperature                    | Tstg                                    | -55 to +150 | °C                   |

Notes: 1.  $PW \le 10 \ \mu s$ , duty cycle  $\le 1 \ \%$ 


- 2. 1 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW  $\leq$  10 s
- 3. 2 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW  $\leq$  10 s

# **Electrical Characteristics**

|                                   |                      |      |      |      |      | $(Ta = 25^{\circ}C)$                                                                                                      |
|-----------------------------------|----------------------|------|------|------|------|---------------------------------------------------------------------------------------------------------------------------|
| Item                              | Symbol               | Min. | Тур. | Max. | Unit | Test Conditions                                                                                                           |
| Drain to source breakdown voltage | V <sub>(BR)DSS</sub> | 200  | —    | —    | V    | $I_D = 10 \text{ mA}, V_{GS} = 0$                                                                                         |
| Gate to source breakdown voltage  | V <sub>(BR)GSS</sub> | ±15  | —    | —    | V    | $I_G = \pm 100 \ \mu A, \ V_{DS} = 0$                                                                                     |
| Gate to source leak current       | I <sub>GSS</sub>     | —    | —    | ±10  | μΑ   | $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$                                                                                   |
| Zero gate voltage drain current   | I <sub>DSS</sub>     | _    | —    | 5    | μA   | $V_{DS} = 200 \text{ V}, V_{GS} = 0$                                                                                      |
| Gate to source cutoff voltage     | V <sub>GS(off)</sub> | 1.0  | —    | 2.1  | V    | $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$                                                                     |
| Static drain to source on state   | R <sub>DS(on)</sub>  | _    | 1.6  | 2.2  | Ω    | $I_D = 0.5 \text{ A}, V_{GS} = 10 \text{ V}^{Note4}$                                                                      |
| resistance                        | R <sub>DS(on)</sub>  | _    | 1.9  | 2.7  | Ω    | $I_D = 0.5 \text{ A}, V_{GS} = 4 \text{ V}^{Note4}$                                                                       |
|                                   | R <sub>DS(on)</sub>  | —    | 2.4  | 5.5  | Ω    | $I_D = 2 \text{ A}, V_{GS} = 5 \text{ V}^{Note4}$                                                                         |
| Forward transfer admittance       | y <sub>fs</sub>      | 0.56 | 0.86 | —    | S    | $I_D = 0.5 \text{ A}, V_{DS} = 10 \text{ V}^{Note4}$                                                                      |
| Input capacitance                 | Ciss                 | _    | 120  | —    | pF   | V <sub>DS</sub> = 10 V                                                                                                    |
| Output capacitance                | Coss                 | —    | 29   | —    | pF   | $V_{GS} = 0$                                                                                                              |
| Reverse transfer capacitance      | Crss                 | _    | 10   | —    | pF   | f = 1 MHz                                                                                                                 |
| Turn-on delay time                | t <sub>d(on)</sub>   | _    | 10   | —    | ns   | $\label{eq:VGS} \begin{array}{l} V_{GS}=5 \mbox{ V}, \mbox{ I}_{D}=0.5 \mbox{ A} \\ V_{DD}\cong 30 \mbox{ V} \end{array}$ |
| Rise time                         | tr                   | _    | 14   | —    | ns   |                                                                                                                           |
| Turn-off delay time               | t <sub>d(off)</sub>  | _    | 24   | _    | ns   |                                                                                                                           |
| Fall time                         | t <sub>f</sub>       | —    | 9    | —    | ns   |                                                                                                                           |
| Body-drain diode forward voltage  | V <sub>DF</sub>      | _    | 0.9  | 1.4  | V    | $I_F = 0.5 \text{ A}, V_{GS} = 0^{Note4}$                                                                                 |

Notes: 4. Pulse test

# **Package Dimensions**



## **Ordering Information**

| Part No.      | Quantity | Shipping Container |
|---------------|----------|--------------------|
| HAT2105T-EL-E | 3000 pcs | Taping             |

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

  Image: States

  Present States

  States

  Present State



http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

## Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510