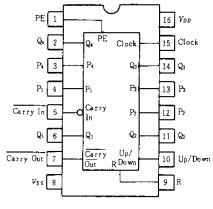
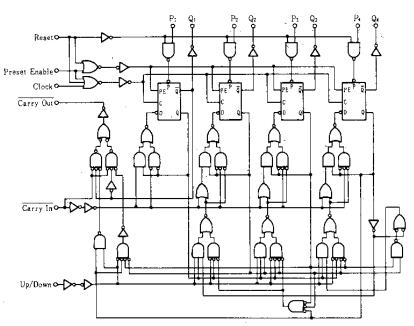
HD14510B


BCD Up/Down Counter

The HD14510B BCD up/down counter consists of type D flip-flop stages with a gating structure to provide type T flip-flop capability. The counter can be cleared by applying a high level on the Reset line. This complementary MOS counter finds primary use in up/down and difference counting and frequency synthesizer applications where low power dissipation and/or high noise immunity is desired. It is also useful in A/D andD/A conversion and for magnitude and sign generation.

FEATURES


- Quiescent Current = 5nA/pkg typ. @5V
- Noise Immunity = 45% of V_{DD} typ.
- Supply Voltage Range = 3 to 18V
- Low Input Capacitance = 5pF typ.
- Internally Synchronous for High Speed
- Logic Edge-clocked Design ... Count Occurs on Positive Going Edge of Clock
- 5MHz Counting Rate
- Asynchronous Preset Enable Operation
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

PIN ARRANGEMENT

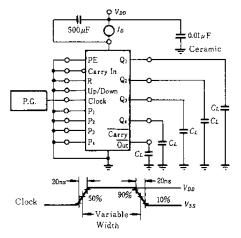
(Top View)

LOGIC DIAGRAM

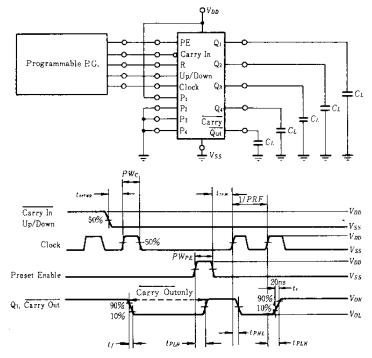
TRUTH TABLE

Carry In	Up/Down	Preset Enable	Reset	Action
1	×	0	0	No Count
0	1	0	0	Count Up
0	0	0	0	Count Down
×	×	1	0	Preset
×	×	×	1	Reset

x-Don't Care



Characteristic	Symbol		- Test Conditions	-40°C		25°C			85°C		Unit
	Symbol	V _{DD} (V)	min	max	min	typ	max	mín	max		
Output Voltage		5.0	$V_{in} = V_{DD}$ or 0	-	0.05		0	0.05		0.05	v
	Vol	10		_	0.05	-	0	0.05		0.05	
		15			0.05	—	0	0.05		0.05	
		5.0		4.95	_	4.95	5.0	—	4.95	-	v
	Von	10	$V_{in} = 0 \text{ or } V_{DD}$	9.95	_	9.95	10	_	9.95		
		15		14.95	_	14.95	15	_	14.95	—	
Input Voltage		5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	_	1.5		2.25	1.5		1.5	v
	V_{IL}	10	$V_{out} = 9.0 \text{ or } 1.0 \text{V}$		3.0	-	4.50	3.0	_	3.0	
		15	$V_{out} = 13.5 \text{ or } 1.5 \text{ V}$	_	4.0		6.75	4.0		4.0	
		5.0	$V_{out} = 0.5 \text{ or } 4.5 \text{V}$	3.5	—	3.5	2.75		3.5		v
	VIH	10	$V_{out} = 1.0 \text{ or } 9.0 \text{V}$	7.0		7.0	5.50	—	7.0		
		15	$V_{out} = 1.5 \text{ or } 13.5 \text{ V}$	11.0	_	11.0	8.25	-	11.0		
Output Drive Current	Іон	5.0	$V_{OH} = 2.5 \mathrm{V}$	-1.0	-	-0.8	-1.7	—	-0.6		mA
		5.0	$V_{OH} = 4.6 \mathrm{V}$	-0.2	—	-0.16	-0.36	—	-0.12	—	
		10	$V_{OH} = 9.5 V$	-0.5	_	-0.4	-0.9		-0.3	-	
		15	$V_{OH} = 13.5 \mathrm{V}$	-1.4		-1.2	-3.5		-1.0		
	IOL	5.0	$V_{OL}=0.4\mathrm{V}$	0.52	_	0.44	0.88		0.36		mA
		10	$V_{OL}=0.5\mathrm{V}$	1.3		1.1	2.25		0.9	-	
		15	$V_{OL} = 1.5 V$	3.6	—	3.0	8.8	_	2.4		
Input Current	Iin	15		-	±0.3	—	± 0.00001	± 0.3	-	±1.0	μA
Input Capacitance	Cin	:	$V_{in} = 0$	- [-	5.0	7.5	-	—	φF
Quiescent Current		5.0	Zero Signa'l, per Package		20		0.005	20	-	150	μA
		10		_	40		0.010	40	—	300	
		15			80	—	0.015	80	-	600	
		5.0	Dynamic $+I_{DD}$,	-	_		0.58		-	-	μA
Total Supply Current*	Iτ	10	per Gate	_	_		1.2	. —	—		
		15	$C_L = 50 \mathrm{pF}, f = 1 \mathrm{kHz}$	- 1	_		1.7	_		·	


ELECTRICAL CHARACTERISTICS

* To calculate total supply current at frequency other than 1kHz. @ $V_{DD} \sim 5.0V I_T = (0.58\mu A/kHz) f + I_{DD}$, @ $V_{DD} = 10V I_T = (1.2\mu A/kHz) f + I_{DD}$, @ $V_{DD} = 15V I_T = (1.7\mu A/kHz) f + I_{DD}$

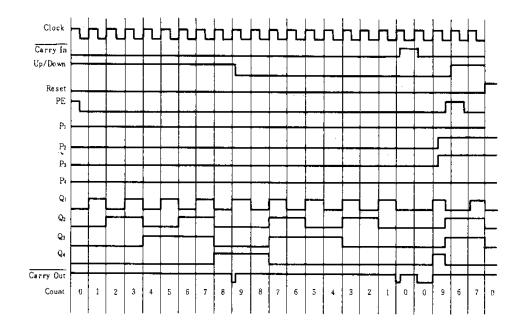
POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

SWITCHING TIME TEST CIRCUIT

HD145108-

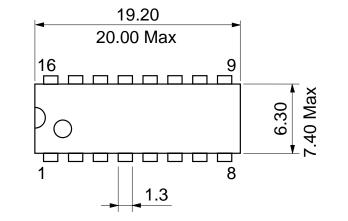
SWITCHING CHARACTERISTICS ($C_{\iota} = 50 \text{pF}, T_a = 25^{\circ}\text{C}$)

Charact	teristic	Symbol	V_{DD} (V)	min	typ	max	Unit
			5.0	-	180	360	1
Output Rise Time	t,	10	-	90	180	ns	
			15	-	65	130	1
Output Fall Time		t,	5.0	· —	120	250	ns
			10	_	60	125	
			15	_	40	100	1
	Clock to Q	-	5.0	_	315	630	ns
			10	_	130	260	
1 <u>4</u>			15	_	100	200	
	Clock to Carry Out		5.0	<u> </u>	315	630	
			10		130	260	
			15		100	200	
	Carry In to Carry Out	tplh, tphl	5.0	_	180	360	
Propagation Delay Time			10		80	160	
			15		60	120	
	Preset, Reset to Q		5.0		315	63 0	
			10		130	260	
			15	—	100	200	
	Preset, Reset to Carry Out		5.0		550	1100	
			10		225	450	
			15	~	150	300	
Clock Pulse Width		₽Wc	5.0	400	200	—	ns
			10	200	100	—	
			15	150	75	—	
		PRF	5.0	_	3.0	1.5	MHz
Clock Frequency			10		6.0	3.0	
			15	—	8.0	4.0	
			5.0	650	325		
Preset or Reset Removal Time	*	trem	10	230	115		ns
			15	180	90		
			5.0	_		15	
Clock Pulse Rise and Fall Time		t_{τ}, t_f	10			15	μs
			15			15	
	Carry In	Lactup	5.0	260	130	-	
			10	120	60		
Setup Time			15	100	50		
	Up/Down		5.0	500	250		
			10	200	100		
·····			15	150	75	-	
			5.0		100	200	
Preset Enable Pulse Width	PW _{PE}	10	_	50	100	ns	
		15		40	80	7	

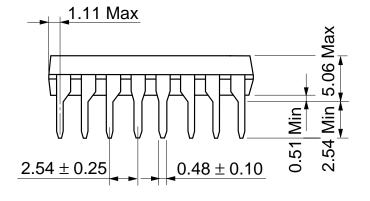

OHITACHI

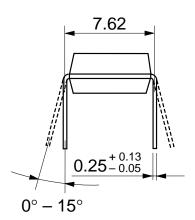
.

 $\ensuremath{\ast}$ The Preset or Reset Signal must be low prior to a positive going transition of the clock.

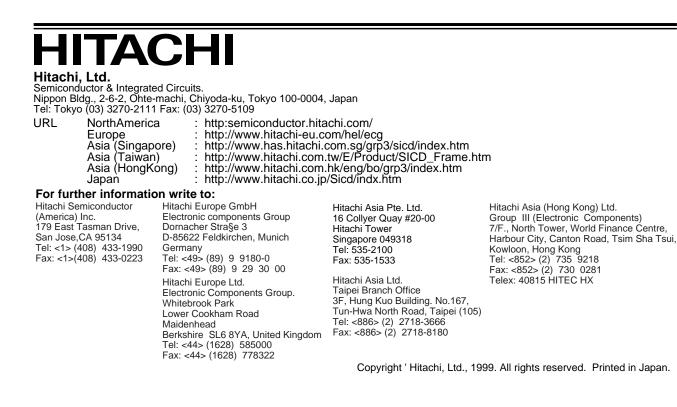


TIMING DIAGRAM





Unit: mm



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI