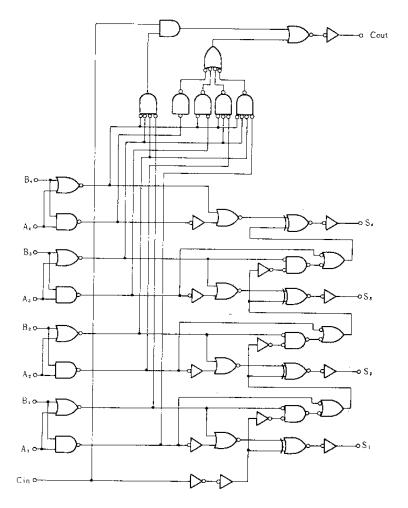
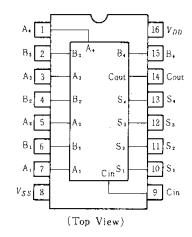
HD14008B


4-bit Full Adder

The HD14008B 4-bit full adder consists of four full adders with fast internal look-ahead carry output. It is useful in binary addition and other arithmetic applications. The fast parallel carry output bit allows high-speed operation when used with other adders in a system.


FEATURES

- Look-Ahead Carry Output
- High-Speed Operation; 160ns typ. from Sum_{in} to Sum_{out}
- Quiescent Current; 5nA/pkg typ @5V
- Supply Voltage Range = 3 to 18V
- Pin-for-Pin Replacement for CD4008B and MC14008B

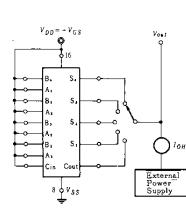
LOGIC DIAGRAM

PIN ARRANGEMENT

TRUTH TABLE(1 Stage)

Cin	В	А	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	I	1	1	1

ELECTRICAL	CHARACTERISTICS
------------	-----------------


Clti.ti	Symbol -		Test Condition	-40°C		25°C			85°C		TT •.	
Characteristic		$V_{DD}(\mathbf{V})$	Test Conditions	min	max	min	typ	max	min	max	- Unit	
Output Voltage		5.0		—	0.05		0	0.05	-	0.05	v	
	VOL	10	$V_{in} = V_{DD}$ or 0	_	0.05	— :	0	0.05	.—	0.05		
		15		_	0.05	-	0	0.05	-	0.05		
		5.0		4.95	-	4.95	5.0	_	4.95		v	
	Von	10	$V_{in} = 0$ or V_{DD}	9.95	_	9.95	10	-	9.95	-		
		15		14.95		14.95	15	_	14.95	_		
· · · · · · · · · · · · · · · · · · ·		5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	_	1.5		2,25	1.5	_	1.5		
	V_{IL}	10	$V_{out} = 9.0 \text{ or } 1.0 \text{V}$	_	3.0	-	4.50	3.0		3.0	v	
		15	Vout=13.5 or 1.5V	-	4.0	_	6.75	4.0	-	4.0		
Input Voltage		5.0	$V_{out} = 0.5 \text{ or } 4.5 \text{V}$	3.5	_	3.5	2.75	-	3.5	_	v	
	ViH	10	$V_{out} = 1.0 \text{ or } 9.0 \text{V}$	7.0	_	7.0	5.50	_	7.0	—		
		15	$V_{out} = 1.5 \text{ or } 13.5 \text{V}$	11.0	_	11.0	8.25	-	11.0	ł		
	1	5.0	$V_{OH} = 2.5 V$	-1.0		-0.8	-1.7		-0.6			
	Іон	5.0	$V_{OB} = 4.6 \mathrm{V}$	0.2	_	-0.16	-0.36	_	-0.12	_	mA	
		10	$V_{OH} = 9.5 V$	-0.5	-	- 0.4	-0.9	-	-0.3	ł		
Output Drive Current		15	$V_{OH} = 13.5 V$	-1.4	_	-1.2	-3.5	_	-1.0	_		
	Iol	5.0	$V_{OL} = 0.4 V$	0.52	_	0.44	0.88	-	0.36	—	mA	
		10	$V_{OL} = 0.5 V$	1.3	-	1.1	2.25	_	0.9	-		
		15	$V_{OL} = 1.5 V$	3.6	_	3.0	8.8	-	2.4			
Input Current	Iin	15		_	±0.3	-	±0.00001	± 0.3	-	±1.0	μA	
Input Capacitance	Cin	-	$V_{in} = 0$	_	-	_	5.0	7.5	-	-	рF	
Quiescent Current	Ισσ	5.0	7 0. 1	_	20	— _	0.005	20		150	μA	
		10	Zero Signal,	-	40		0.010	40		300		
		15	per Package	_	80	<u> </u>	0.015	80	_	600		
	Ιτ	5.0	Dynamic $+I_{DD}$, $C_L = 50 \mathrm{pF}$	-	_	-	1.7	_		_	μA	
Total Supply Current*		10	f=1 kHz,	_	_	-	3.4					
		15	Per Gate	-	-		5.0	-	_			

* To calculate total supply current at frequency other than 1kHz.

 $@V_{DD} = 5.0 \text{ V}$ IT = $(1.7 \mu \text{ A/kHz})f + I_{DD}$ @V_{DD} = 10 V IT = $(3.4 \mu \text{ A/kHz})f + I_{DD}$ or $V_{DD} = 15 \text{ V}$ $I_T = (5, 0 \mu \text{ A/kHz})f - I_{DD}$

DC CHARACTERISTIC TEST CIRCUIT

• Іон

 $v_{DD} = v_{GS}$

в. s,

A.

Β, s,

A,

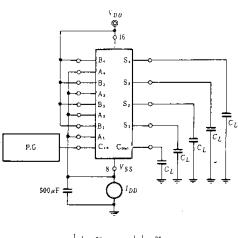
Α,

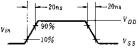
B, s

Α1

Cin Cout

⁸ ∳ [¥]ss

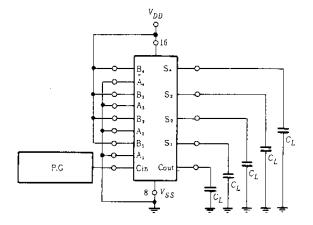

6 16

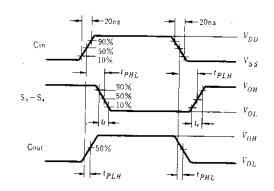

\$ B:

-o

Ŷ

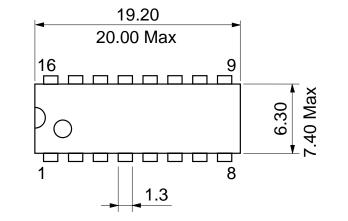
Vout

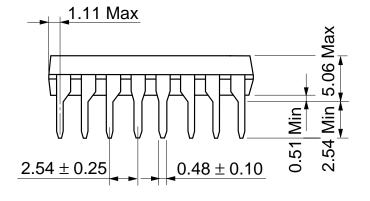

IOL

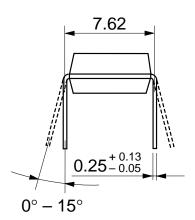

External Power Supply

Characteristic		Symbol	$V_{DD}(\mathbf{V})$	min	typ	max	Unit
Output Rise Time			5.0		180	360	ns
		t.r	10		90	180	
			15		65	130	
Output Fall Time			5.0		100	200	ns
		t f	10	_	50	100	
			15	_	40	80	
	Sum In-to-		5.0		400	800	ns
	Sum In-to-	tPLH, tPHL	10		160	320	
			15	_	115	230	
	Sum In-to- Carry Out Carry In- to- Sum Out		5.0		305	610	
			10	. —	145	290	
Propagation Delay Time			15		110	220	
			5.0		375	750	
			10	_	155	310	
			15		115	230	
	Carry In- to- Carry Out		5.0		170	340	
			10		75	150	
			15	_	55	110	

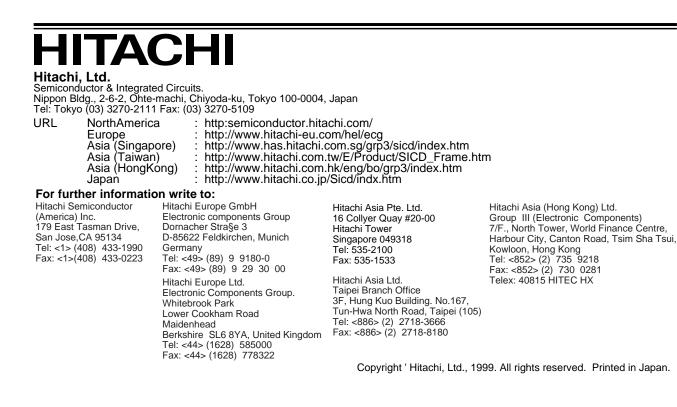
ESWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}, Ta = 25^{\circ}\text{C}$)


SWITCHING TIME TEST CIRCUIT





Unit: mm



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI