

ACE809

Description

The ACE809 microprocessor supervisory circuits can be used to monitor the power supplies in microprocessor and digital systems. They provide s reset to the microprocessor during power-up, power-down and brown-out conditions.

The function of the ACE809 is to monitor the V_{CC} supply voltage, and assert a reset signal whenever this voltage declines below the factory-programmed reset threshold. The reset signal remains asserted for 240ms after V_{CC} rises above the threshold. The ACE809 has an active-low RESET output. The output of the ACE809 is guaranteed valid down to V_{CC} =1V. The device is available in a SOT-23-3L package.

The ACE809 is optimized to reject fast transient glitches on the V_{CC} line. Low supply current of 25µA, (V_{CC}=3.3V) makes these devices suitable for battery powered applications.

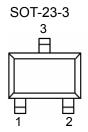
Features

- Precision Vcc Monitor for 3.0V,3.3V and 5.0V Supplies
- 140ms Guaranteed Minimum RESET Output Duration
- RESET Output Guaranteed to Vcc=1.0V
- Low 25µA Supply Current.
- Vcc Transient Immunity.
- No External Components.

Application

- Embedded systems
- Computers
- Critical µP Power Supply Monitoring
- Battery Powered equipment

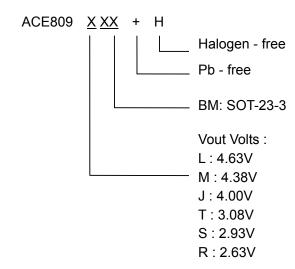
Absolute Maximum Ratings


Parameter	Symbol	Max	Unit
Supply Voltage	V_{CC}	5.5	>
Output Voltage	RESET	-0.3 to (Vcc+0.3)	٧
Input Current		20	mΑ
Output Current	I _{OUT}	20	mΑ
Power Dissipation	P_D	Internally Limited	
Thermal resistance junction to ambient SOT-23-3	θ_{JA}	230	°C/W
Operating junction temperature range	T_J	0 to 125	$^{\circ}\! C$
Storage temperature range	T _{STG}	-60 to 150	$^{\circ}\! C$

Note 1: Exceeding these rating could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

Note 2: Voltage values are with respect to the anode terminal unless otherwise noted.

ACE809 Technology 3-Pin Microprocessor Reset Circuits **ACE809**


Packaging Type

Pin No	Symbol	Description
1	GND	Ground
2	RESET	RESET output remains low while Vcc is below the reset voltage threshold and for 240msec(typ.) after Vcc rises above reset threshold
3	Vcc	Supply Voltage (typ.)

Ordering information

Selection Guide

Power Dissipation Table

Package	(°C /W)	Df(mW/℃) TA≧25℃	T _A ≤ 25 °C Power rating(mW)	T _A =70 °C Power rating(mW)	T _A = 85 °C Power rating (mW)
BM	230	3.5	543	348	283

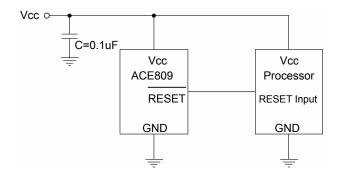
Note:1.Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into Thermal shutdown.

2.T_J: Junction Temperature Calculation T_J = T_A + (P_D x θ _{JA})

The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system. All of the above assume no Ambient airflow.

3.0JA: Thermal Resistance-Junction to Ambient, DF: Derating factor, Po: Power consumption

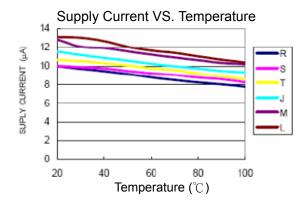
ACE809

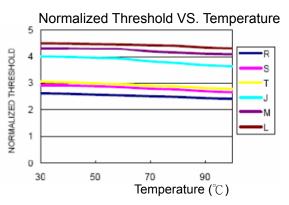

Recommended Work Conditions

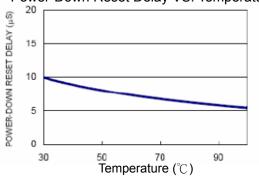
Item	Min	Тур.	Max	Unit
Input Voltage (Vin)	2.0		5.5	V
Junction Temperature (T _J)		0~125		$^{\circ}\!\mathbb{C}$

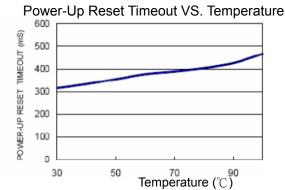
Electrical Characteristics

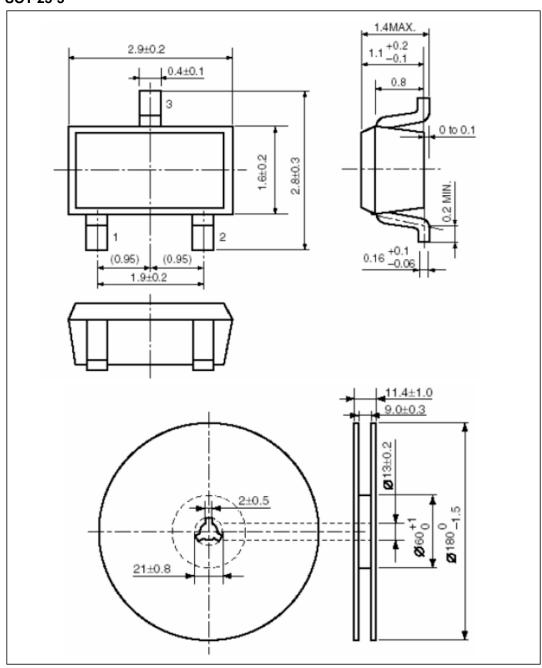
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Voltage	Vcc		2.0		5.5	V
Supply Current	Icc			18	25	uA
		ACE809-4.63	4.54	4.63	4.72	V
		ACE809-4.38	4.29	4.38	4.47	
Reset Threshold	V _{TH}	ACE809-4.00	3.92	4.00	4.08	
		ACE809-3.08	3.02	3.08	3.14	
		ACE809-2.93	2.87	2.93	2.99	
		ACE809-2.63	2.58	2.63	2.68	
Reset Threshold Temperature Coefficient (Note)				30		ppm/ ℃
Vcc to Reset Delay Vcc=V _{TH} to (V _{TH} -100mV)				20		usec
Reset Active Timeout Period				240		msec
RESET Output Voltage Low	V _{OL}	I _{SINK} =3mA			0.4	V
RESET Output Voltage High	V _{OH}	I _{SOURCE} =800uA	0.8Vcc			V


Typical Applications




ACE809 3-Pin Microprocessor Reset Circuits


Typical Performance Characteristics


Power-Down Reset Delay VS. Temperature

Packing Information

SOT-23-3

ACE809

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/