Monolithic Linear IC

LA4725

2-Channel BTL Power Amplifier (30 W+30 W) with Standby Switch for Car Stereos

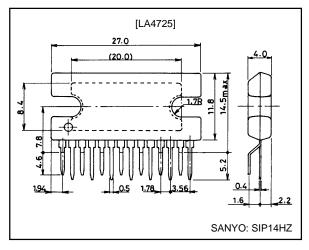
Preliminary

Overview

The LA4725 is a BTL two-channel power IC for car audios developed in pursuit of excellent sound quality. Low-region frequency characteristics have been improved through the use of a new NF capacitorless circuit, and crosstalk which causes "muddy" sound has been reduced by improving both circuit and pattern layout. As a result the LA4725 provides powerful bass and clear treble.

Features

- \cdot High power: supports total output of 30 W+30 W. [EIAJ power] (V_{CC}=14.4 V, THD=30 %, R_L=4 \Omega)
- \cdot Less pop noise.
- \cdot Designed for excellent sound quality. (fL<10 Hz, fH=130 kHz)
- · Any rise time settable by an external capacitor.
- \cdot Standby switch circuit on chip. (microcontroller supported)
- · Various protectors on chip.
- (output-to-ground short/ output-to- V_{CC} short/ load short/ overvoltage/ thermal shutdown circuit)
- \cdot The LA4725 is pin-compatible with the LA4728.


Specifications

Maximum Ratings at Ta = 25 °C

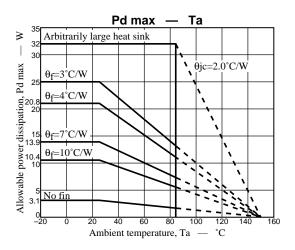
Package Dimensions

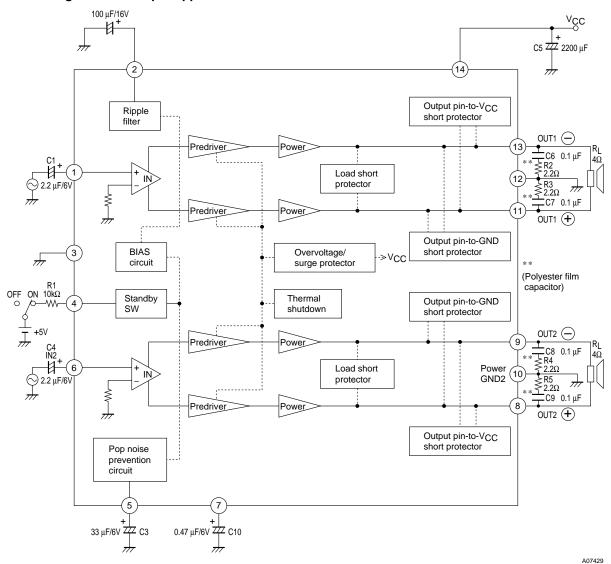
unit: mm

3113A-SIP14HZ

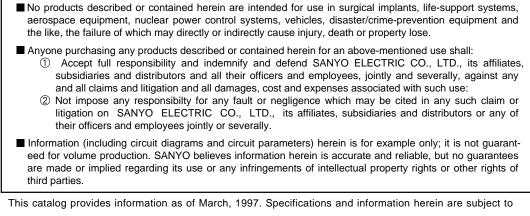
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		18	V
Surge supply voltage	V_{CC} surge	$f \le 0.2 \text{ s}$, single giant pulse	50	V
Maximum output current	I _O peak	Per channel	3.0	A
Allowable power disspation	Pd max	With arbitrarily large heat sink	32	W
Operating temperature	Topr		-35 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

Recommended Conditions at Ta = 25 °C


Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		13.2	V
Operating voltage range	V _{CC} op	Range where Pd max is not exceeded	9 to 16	V
Recommended load resistance	R _L op		4	Ω


SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

32497RM(KOTO) No.5715-1/3


Operating Characteristics at Ta = 25 °C, V_{CC} = 13.2 V, R_L = 4 k Ω , f = 1 kHz, Rg = 600 Ω

Parameter	Symbol	Conditions		Ratings		
	Symbol		min	typ	max	Unit
Quiescent current	Icco	Rg=0	70	125	250	mA
Standby current	I _{ST}			10	60	μA
Voltage gain	VG		38	40	42	dB
Total harmonic distortion	THD	P _O =1 W		0.06	0.2	%
Output power	P _{O1}	R _L =4 Ω, THD=10 %, V _{CC} =13.2 V	13	17		W
	P _{O2}	R _L =4 Ω, THD=10 %, V _{CC} =14.4 V		20		W
	P _{O3}	R _L =4 Ω, THD=30 %, V _{CC} =14.4 V		30		W
Output offset voltage	V _{N offset}	Rg=0	-300		+300	mV
Output noise voltage	V _{NO}	Rg=0, B.P.F.=20 Hz to 20 kHz		0.1	0.5	mVrms
Ripple rejection ratio	SVRR	Rg=0, f _R =100 Hz, V _R =0 dBm	40	50		dB
Channel separation	Chsep	Rg=10 kΩ, V _O =0 dBm	50	60		dB
Input resistance	Ri		21	30	39	kΩ
Standby pin applied voltage	Vst	Amp on, applied through 10 k Ω	2.5		V _{CC}	V

Block Diagram and Sample Application Circuit

change without notice.