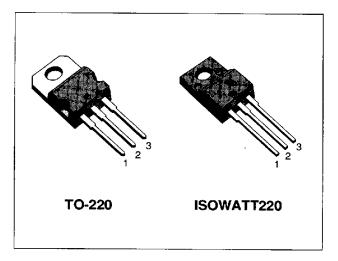
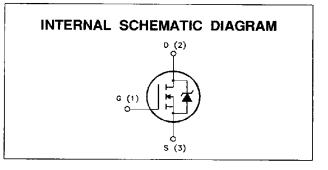
7929237 0046532 728 🖿 SGTH

STP55N06L STP55N06LFI

N - CHANNEL ENHANCEMENT MODE LOW THRESHOLD POWER MOS TRANSISTOR

TYPE	VDSS	R _{DS(on)}	ID
STP55N06L	60 V	< 0.023 Ω	55 A
STP55N06LFI	60 V	< 0.023 Ω	30 A


SGS-THOMSON


MICROELECTRONICS

- TYPICAL $R_{DS(on)} = 0.02 \Omega$
- AVALANCHE RÜGGED TECHNOLOGY
- 100% AVALANCHC (ESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- LOGIC LEVEL COMPATIBLE INPUT
- 175°C OPERATING TEMPERATURE FOR STANDARD PACKAGE
- APPLICATION ORIENTED CHARACTERIZATION

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- REGULATORS
- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, Etc.)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value			
		STP55N06L	STP55N06LFI	-	
VDS	Drain-source Voltage (V _{GS} = 0)		60	V	
Vdgr	Drain- gate Voltage (R_{GS} = 20 k Ω)	60		V	
V_{GS}	Gate-source Voltage	±	15	V	
I _D	Drain Current (continuous) at T _c = 25 °C	55	30	Α	
۱ _D	Drain Current (continuous) at T _c = 100 °C	38	21	Α	
I _{DM} (•)	Drain Current (pulsed)	220	220	A	
Ptot	Total Dissipation at $T_c = 25 \ ^{\circ}C$	150	45	w	
	Derating Factor	1	0.3	W/°C	
Viso	Insulation Withstand Voltage (DC)		2000	V	
T _{stg}	Storage Temperature	-65 t	o 175	°C	
Tj	Max. Operating Junction Temperature	1	75	°C	

(•) Pulse width limited by safe operating area

July 1993

1/7

7929237 0046533 664 🔳 SGTH

THERMAL DATA

			TO-220	ISOWATT220	
R _{thi-case}	Thermal Resistance Junction-case	Max	1	3.33	°C/W
R _{thj-amb} R _{thc-sink}	Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering P	Max Typ urpose		62.5 0.5 300	°C/W °C/W °C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit	
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, $\delta < 1\%$)	55	A	
EAS	Single Pulse Avalanche Energy (starting $T_i = 25 ^{\circ}C$, $I_D = I_{AB}$, $V_{DD} = 25 ^{\circ}V$)	500	mJ	
E _{AR}	Repetitive Avalanche Energy (pulse width limited by T_j max, $\delta < 1\%$)	120	mJ	
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 \text{ °C}, \text{ pulse width limited by } T_j \text{ max}, \delta < 1\%)$	38	A	

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	60			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating x 0.8$ $T_c = 125 °C$		5	250 1000	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 15 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $i_D = 250 \ \mu A$	1	1.6	2.5	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 5 V I_D = 27.5 A$ $V_{GS} = 5 V I_D = 27.5 A T_c = 100^{\circ}C$		0.02	0.023 0.046	Ω Ω
I _{D(on)}	On State Drain Current	V _{DS} > I _{D(on)} x R _{DS(on)max} V _{GS} = 10 V	55			А

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 27.5 \text{ A}$	20	39		S
Ciss Coss Crss	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 V$ f = 1 MHz $V_{GS} = 0$		2700 850 180	3600 1200 250	pF pF pF

SGS-THOMSON MICROELECTRONICS

2/7

1130

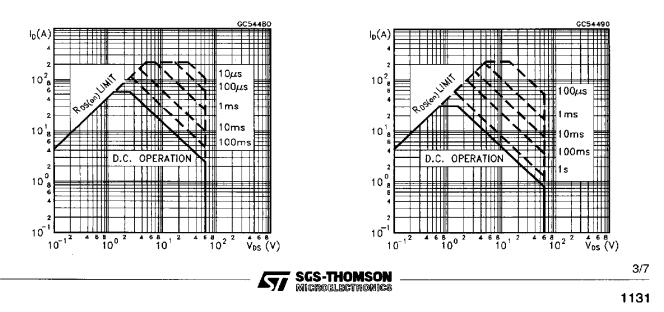
ELECTRICAL CHARACTERISTICS (continued) SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time			150 950	220 1400	ns ns
(di/dt) _{on}	Turn-on Current Slope			110		A/µs
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 40 \text{ V}$ $I_D = 55 \text{ A}$ $V_{GS} = 5 \text{ V}$		55 12 28	80	nC nC nC

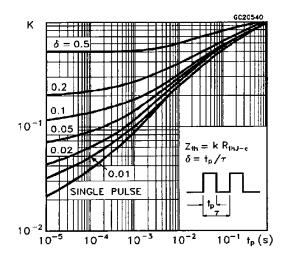
SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
tr(Voff)	Off-voltage Rise Time	$V_{DD} = 40 V$ $I_{D} = 55 A$		185	270	ns
t _f	Fall Time	$R_G = 50 \Omega$ $V_{GS} = 5 V$		250	350	ns
$t_{\mathbf{c}}$	Cross-over Time	(see test circuit, figure 5)		500	700	ns

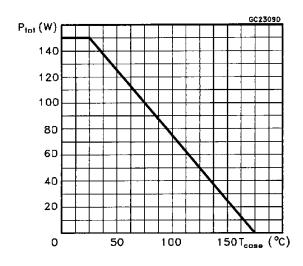
SOURCE DRAIN DIODE

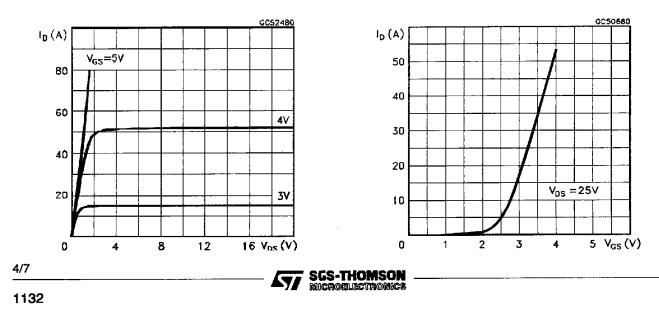

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				55 220	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 55 \text{ A} V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 55 \text{ A}$ di/dt = 100 A/µs V _{DD} = 30 V T _i = 150 °C		120		ns
Qrr	Reverse Recovery Charge	(see test circuit, figure 5)		0.3		μC
IRRM	Reverse Recovery Current			5		A

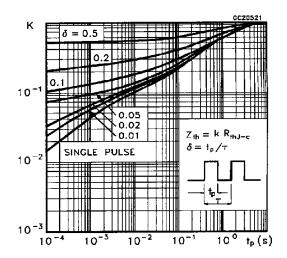
(*) Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

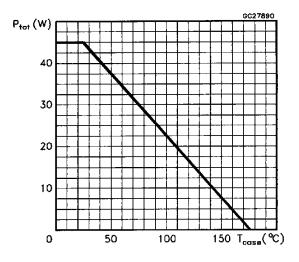

(•) Pulse width limited by safe operating area

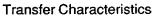
Safe Operating Areas For TO-220


Safe Operating Areas For ISOWATT220

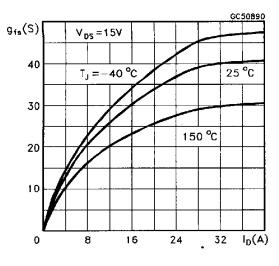

Thermal Impedeance For TO-220


Derating Curve For TO-220

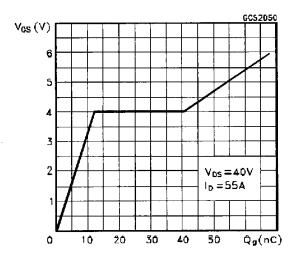

Output Characteristics

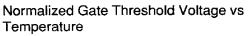


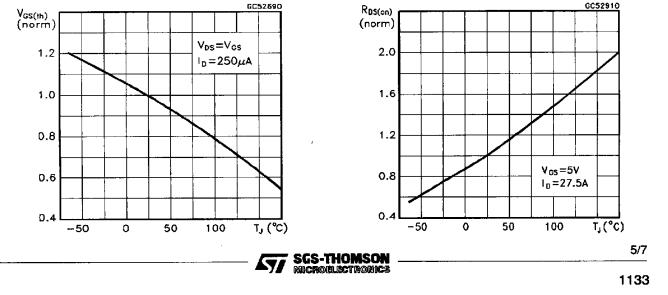
Thermal Impedance For ISOWATT220

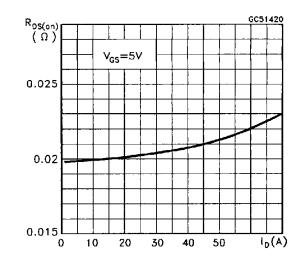


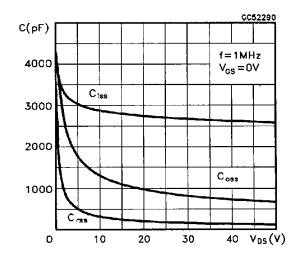
Derating Curve For ISOWATT220



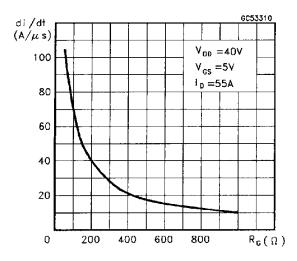



Transconductance


Gate Charge vs Gate-source Voltage

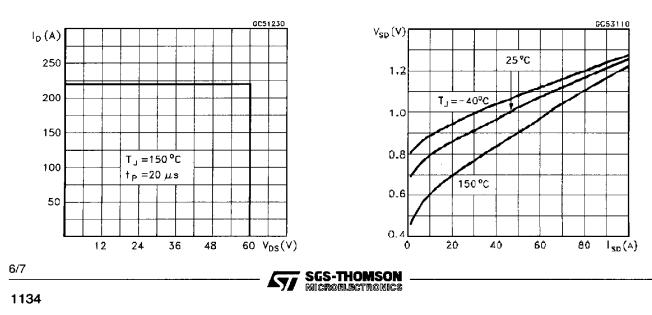


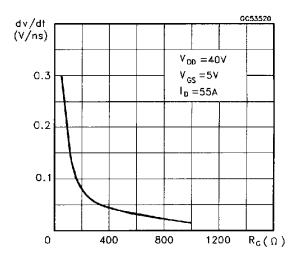
Static Drain-source On Resistance

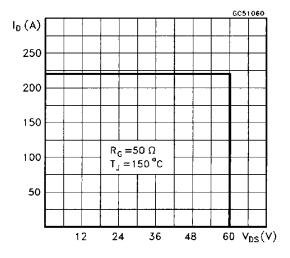

Capacitance Variations

Normalized On Resistance vs Temperature

7929237 0046537 20T 🖿 SGTH


Turn-on Current Slope


Cross-over Time


Accidental Overload Area

Turn-off Drain-source Voltage Slope

Switching Safe Operating Area

Source-drain Diode Forward Characteristics

7/7

1135

Fig. 1: Unclamped Inductive Load Test Circuits

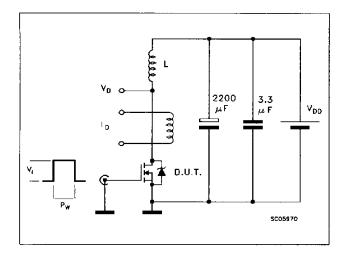
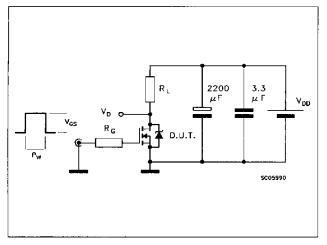
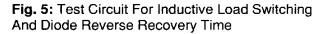




Fig. 3: Switching Times Test Circuits For Resistive Load

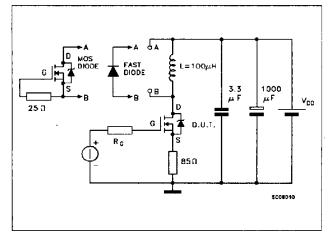


Fig. 2: Unclamped Inductive Waveforms

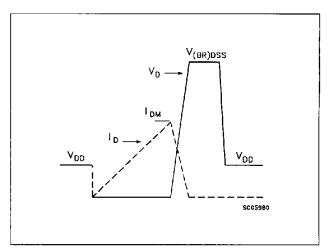
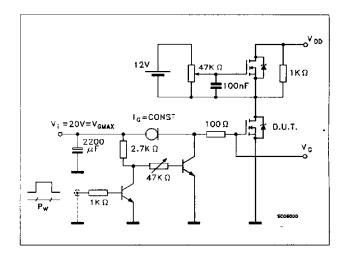



Fig. 4: Gate Charge Test Circuit

This Material Copyrighted By Its Respective Manufacturer

57

SGS-THOMSON