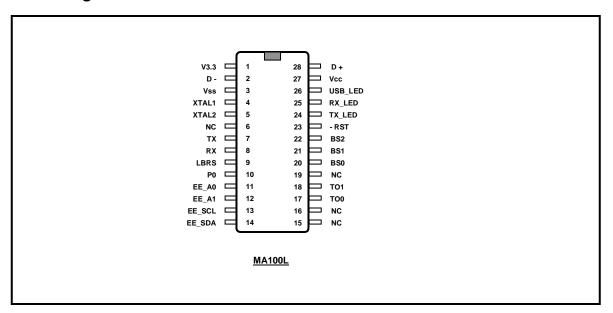
Features

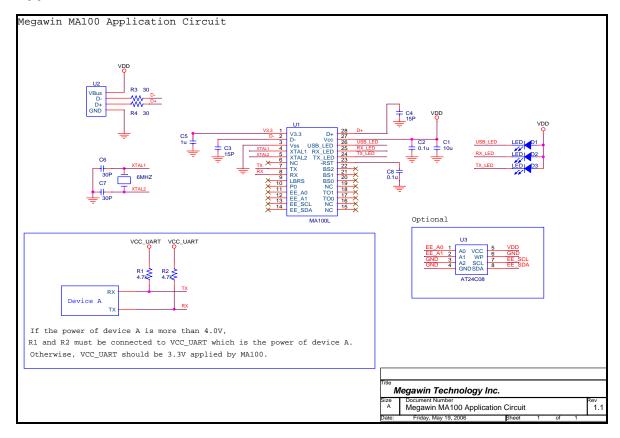
- Operating voltage from 4.35V to 5.5V
- Universal Asynchronous Serial Receiver/Transmitter (UART) to Universal Serial Bus (USB)
 Bridge
- High efficient data transfer rate and low cost solution for UART-to-USB bridge, which has to connect 1200bps ~ 57.6Kbps UART device.
- Integrated USB transceiver for Low speed USB 1.5Mbps Specification, Version 1.1
- Embedded 3.3 V voltage regulator for USB data signals
- Built-in power-on-reset
- Supports suspend/normal mode for the power management
- 6 MHz external crystal or external ceramic resonator
- Support optional external serial EEPROM for USB VID, PID, product related string and external setting
- LEDs indicate the activity between USB and UART
- USB PC driver is available for Microsoft Windows 98 SE/Me/2000/XP
- Package:

Die form: MA100H28-SSOP: MA100L

General Description


The MA100 is a USB interface to a UART bridge controller, which allows high efficient data transfer rate between a UART device and a USB host. The MA100 is usually used in some existing devices with UART only, and work through it to provide easy connectivity between USB host and UART device.

The MA100 will be connected up to 57.6k bps UART, and the USB PC software driver is also supported for the Microsoft Windows 98 SE/Me/2000/XP environment. MA100 will be very suitable for hand-held game, data bank, I-toy, and other products that need to download/upload data through the PC system.


Pin Description

PIN Name	I/O	Description		
TX	0	UART Transmit with an open-drain		
RX	I	UART Receive with an open drain		
BS0~2	I	Test pin		
LBRS	I	Low baud rate select pin		
USB_LED	0	LED for USB indication		
TX_LED	0	LED for transmit indication		
RX_LED	0	LED for receive indication		
P0	0	Output pin		
-RST	I	Reset pin, low active		
TO0~1	I	Time-out between RX and USB		
EE_A0	0	External EEPROM A0 address pin		
EE_A1	0	External EEPROM A1 address pin		
EE_SCL	0	External EEPROM serial clock input pin		
EE_SDA	I/O	External EEPROM serial data pin		
XTAL1	I	6MHz crystal or resonator in		
XTAL2	I	6MHz crystal or resonator out		
D+	I/O	USB data +		
D-	I/O	USB data -		
V _{CC}	ı	Voltage supply		
V_{SS}	I	Ground		
V3.3	0	3.3V regulated output, a capacitor should be added on		
		this pin		

Pin Configuration

Application Notice

1. Time-out between RX and USB:

Time-out = 1/baud rate x 2^n , where n=0 for TO1=1 and TO0=1, n=1 for TO1=1 and TO0=0; n=2 for TO1=0 and TO0=1, n=3 for TO1=0 and TO0=0.

2. TX/RX-pin is an open-drain pin:

The TX/RX is an open-drain circuit, So, It decide that how much the suspend current, That is, If the power of device A is more than 4.0V, The VCC_UART's power must be connect to the power of device A, Otherwise, The VCC_UART's power should be connect to V3.3 pin of the MA100

3. UART's TX data delay

There is a time gap between the bytes transmitted via MA100's TX-pin. When the frequency of oscillator is 6 MHz, the minimum time gap is 10 microseconds. Users need to make sure the UART receiver device could move the data from the receiving buffer during the time gap, 10 us, to avoid it being overwritten by the following byte of data. The signal timing is shown in the following.

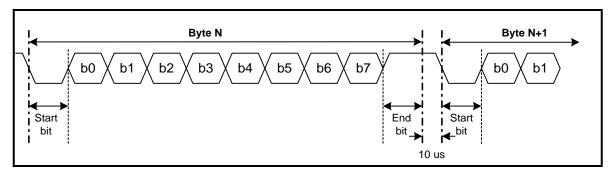


Fig 1. The signal timing of TX-pin

Absolute Maximum Rating

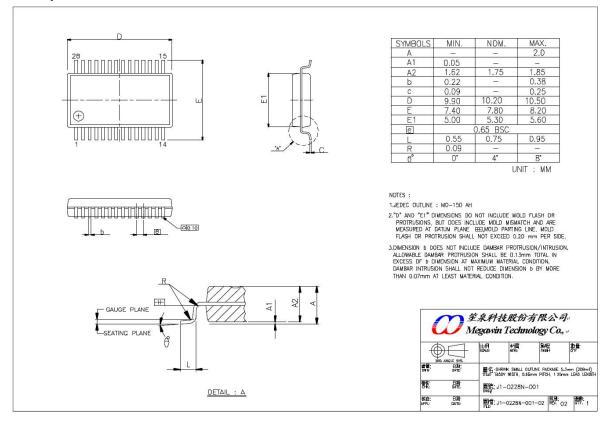
PARAMETER	RATING	UNIT
Supply Voltage to Ground Potential	-0.5 to +6.0	V
Maximum current per pin excluding VDD and Vss	25	mA
Maximum current out of GND	100	Ма
Maximum current out of VCC	100	Ma
Ambient Operating Temperature	0 to +70	°C
Storage Temperature	-40 to +125	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

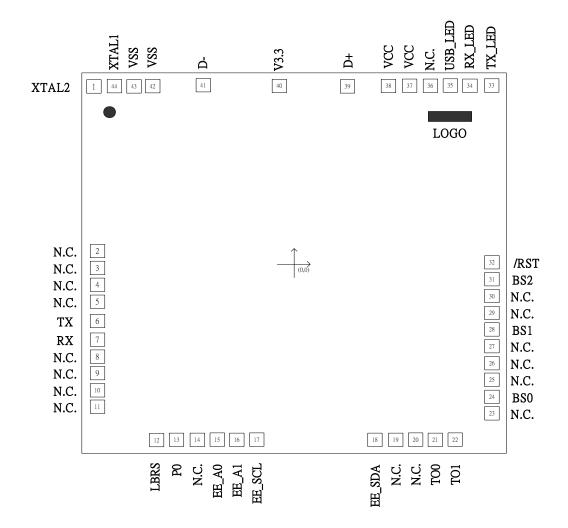
DC Characteristics

(VDD-Vss = 5.0 V, Fosc = 6MHz, Ta = 25° C; unless otherwise specified)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Op. Voltage	Vdd	-	4.35	-	5.5	V
Op. Current	IOP	No load (ExtV) In normal operation	-	-	20	Ма
Suspend Current	Isus	No load (ExtV)	-	300	450	μА
Input High Voltage	ViH	-	2	-	VDD	V
Input Low Voltage	VIL	-	0	-	0.8	V
USB function						
Static output high	Vон	RL = 15Kohm to Vss	2.8	-	3.6	V
Static output low	Vol	No load	-	-	0.3	V
Differential input sensitivity	Vdi	(D+) – (D-)	0.2	-	-	V
Differential common mode range	Vсм	Include VDI range	0.8	-	2.5	V
Single ended receiver threshold	VSE	-	0.8	-	2.0	V
Regulator supply voltage	V3.3	IL = 4 Ma	3.0	-	3.6	V
UART function						
Tx sink current	lol	VOL = 0.4V, VDD = 5.0V	-	4.0	-	Ма


AC Characteristics

(VDD-Vss = 5.0 V, Fosc = 6MHz, Ta = 25° C; unless otherwise specified)


PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
USB function						
Internal operating frequency	f _{OP}		1.5	-	1.5	MHz
Transition time						
Rise time	t _R		75	-	300	Ns
Fall time	t _F		75	-	300	Ns
Rise/Fall time matching	t _{RFM}	t _R / t _F	80	-	125	%
Output signal crossover VCRS voltage			1.3	-	2.0	V
Low speed data rate	t _{DRAT}		1.4775	-	1.5225	Mbps
Source differential driver jitter						
To next transition	t _{UDJ1}	CL=350Pf measured at	-25	-	25	Ns
For paired transition	t _{UDJ2}	crossover point	-14	-	14	Ns
Receiver data jitter tolerance						
To next transition	t _{DJR1}	CL=350Pf measured at	-75	-	75	Ns
For paired transition	t _{DJR2}	crossover point	-45	-	45	Ns
Source EOP width	t _{EOPT}	Measured at crossover point	1.25	-	1.50	Us
Differential to EOP transition skew	t _{DEOP}	Measured at crossover point	-40	-	100	Ns
Receiver EOP width						
Must reject as EOP	t _{EOPR1}	Measured at crossover point	333	-	-	Ns
Must accept t _{EOPR2}			667	-	-	Ns
UART function	•	·	•			
Duration from End-bit to Next Start-bit on Transmission	t _{TD}		10	-	-	Us
Duration from End-bit to Next t _{RD} Start-bit on Receiving			0	-	-	Us

Package Dimensions

28-pin SSOP

Pad Assignment

Revision History

Version	Date	Page	Description
A1	2006/05		Initial document
A2	2008/06		Update document
A3	2008/12		Formatting