

CXOM OSCILLATOR

300 kHz to 120 MHz

Low Profile Miniature Surface Mount Crystal Oscillator

DESCRIPTION

Statek's surface-mount CXOM oscillators consist of a Statek miniature quartz crystal and a CMOS/TTL compatible hybrid circuit in a low-profile ceramic package with an extremely small footprint.

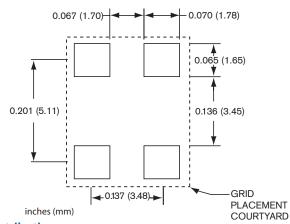
FEATURES

- Designed for surface mount applications using infrared, vapor phase, or epoxy mount techniques
- CMOS and TTL compatible
- Low power consumption
- Optional Output Enable/Disable with Tri-State
- Low EMI emission
- High shock resistance
- Full military testing available
- Hermetically sealed ceramic package

APPLICATIONS

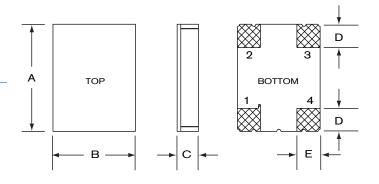
Military & Aerospace

- Smart Munitions
- Cockpit Systems
- Navigation


Industrial, Computer & Communications

- Industrial Controls
- Instrumentation
- Microprocessor Clocks

Medical


Infusion Pumps

SUGGESTED LAND PATTERN

DIMENSIONS

	TYPICAL		MAXIMUM	
DIM	inches	mm	inches	mm
Α	0.256	6.50	0.263	6.68
В	0.197	5.00	0.204	5.18
C (SM1) C (SM3/SM5)	0.051 0.055	1.30 1.40	0.055 0.063	1.40 1.60
D	0.055	1.40	0.065	1.65
Е	0.060	1.52	0.070	1.78

PIN CONNECTIONS

- 1. Enable/Disable (E or T) or not connected (N)
- 2. Ground
- 3. Output
- 4. V_{DD}

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice. Tighter specifications available. Please contact factory.

Supply Voltage¹ 5.0 V Calibration Tolerance² ± 100 ppm

± 50 ppm for Commercial Frequency Stability Over Temperature³ ± 100 ppm for Industrial

± 100 ppm for Military

10 MHz 4 mA Supply Current (Typical)

> 24 MHz 8 mA 30 MHz 10 mA 40 MHz 12 mA 50 MHz 14 mA

Output Load (CMOS)4 15 pF

5 ms MAX Start-up Time Rise/Fall Time 6 ns MAX

40% MIN, 60% MAX Duty Cycle

10 ppm MAX Aging, first year

Shock, survival⁵ $3,000 \text{ g}, 0.3 \text{ ms}, \frac{1}{2} \text{ sine}$

20 g, 10-2,000 Hz swept sine Vibration, survival⁶

Operating Temp Ranges -10°C to +70°C (Commercial)

> -40°C to +85°C (Industrial) -55° C to $+125^{\circ}$ C (Military)

- 1. Other voltages available. For 3.3 V, see CXO3M data sheet (10126). For others, contact factory
- 2. Other tolerances available.
- 3. Does not include calibration tolerance. Other tolerances available.
- 4. Higher CMOS loads and TTL loads available. Contact factory.
- 5. Higher shock version available. Contact factory about CXOMHG.
- 6. Per MIL-STD-202G, Method 204D, Condition D. Random vibration testing also available.

Note: All parameters are measured at ambient temperature with a 10 M Ω , 15 pF load.

PACKAGING OPTIONS

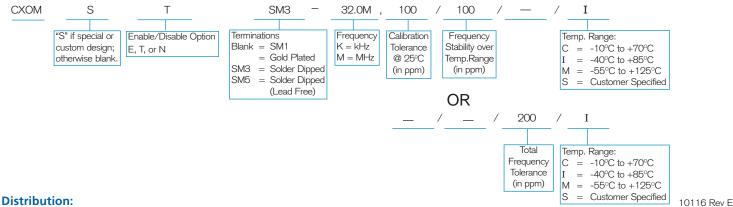
CXOM - Tray Pack

- 16mm tape, 7" or 13" reels Per EIA 418 (see Tape and Reel data sheet 10109)

ABSOLUTE MAXIMUM RATINGS

-0.5 V to 7.0 VSupply Voltage V_{DD} -55°C to +125°C Storage Temperature Maximum Process Temperature 260°C for 20 seconds

ENABLE/DISABLE OPTIONS (E/T/N)


Statek offers three enable/disable options: E, T, and N. Both the E-version and T-version have Tri-State outputs and differ in whether the oscillator continues to run internally when the output is put into the high Z state: it stops in the E-version and continues to run in the T-version. So, the E-version offers very low current consumption when the oscillator is disabled and the T-version offers very fast output recovery when the oscillator is re-enabled. The N-version does not have PIN 1 connected internally and so has no enable/disable capability. The following table summarizes the three options.

COMPARISON OF **ENABLE/DISABLE OPTIONS E AND T**

	E	Т		
When enabled (PIN 1 is high*)				
Output	Freq. output	Freq. output		
Oscillator	Oscillates	Oscillates		
Current consumption	Normal	Normal		
When disabled (PIN 1 is low)				
Output	High Z state	High Z state		
Oscillator	Stops	Oscillates		
Current consumption	Very low	Lower than normal		
When re-enabled (PIN 1 changes from low to high)				
Output recovery	Delayed	Immediate		

 $^{^{\}star}$ When PIN 1 is allowed to float, it is held high by an internal pull-up resistor.

HOW TO ORDER CXOM SURFACE MOUNT CRYSTAL OSCILLATORS

