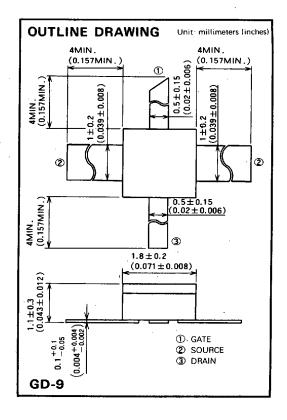
DESCRIPTION

The MGF1402B low-noise GaAs FET with an N-channel Schottky gate is designed for use in S to X band amplifiers and oscillators. The hermetically sealed metalceramic package assures minimum parasitic losses, and has a configuration suitable for microstrip circuits.

FEATURES

- Low noise figure NF_{min} = 3.0dB (TYP.) @ f = 12GHz
- High associated gain G_s = 8dB (TYP.) @ f = 12GHz
- High reliability and stability

APPLICATION


S to X band low-noise amplifiers and oscillators.

QUALITY GRADE

• IG, IGX, IGV

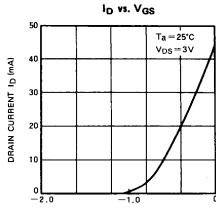
RECOMMENDED BIAS CONDITIONS

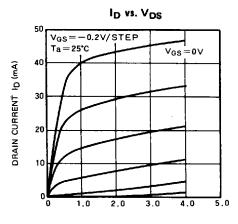
- V_{DS}=3V
- I_D=10mA
- Refer to Bias Procedure

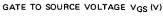
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

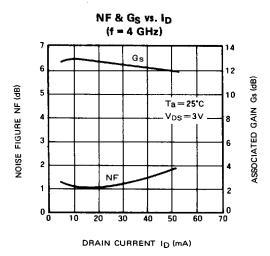
Symbol	Parameter	Ratings	Unit
V _{GDQ}	Gate to drain voltage	-6	V
V _{GSO}	Gate to source voltage	-6	V
I _D	Drain current	100	mA
PT	Total power dissipation *1	360	mW
Tch	Channel temperature	175	°C
Tstg	Storage temperature	-55~+175	·c

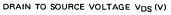
^{*1:} Tc=25℃

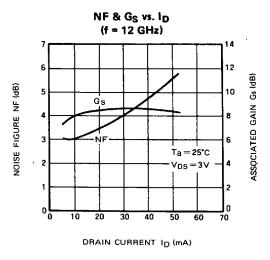

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

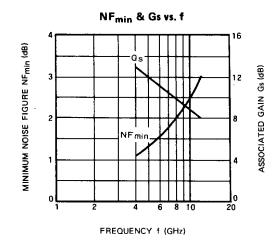

Symbol	Parameter	Test conditions		Limits			
	, arameter	rest conditions	Min	Тур	Max	Unit	
V _{(BR)GDO}	Gate to drain breakdown voltage	$I_G = -100 \mu A$	-6	_	_	V	
V(BR)G\$0	Gate to source breakdown voltage	$I_G = -100 \mu A$	-6	_	_	V	
IGSS	Gate to source leakage current	V _{GS} =-3V, V _{DS} =0V	_	_	10	μА	
loss	Saturated drain current	V _{GS} =0V, V _{DS} =3V	30	60	100	mA	
Vgs(off)	Gate to source cut-off voltage	V _{DS} =3V, I _D =100μA	-0.3	_	-3.5	V	
9m	Transconductance	V _{DS} =3V, I _D =10mA	25	45	_	ms	
Gs	Associated gain	V _{DS} =3V, I _D =10mA, f=12GHz	5	8	_	dB	
NFmin	Minimum noise figure	gure V _{DS} =3V, I _D =10mA, f=12GHz		3.0	4.0	dB	
Rth (ch-a)	Thermal resistance #1	ΔVf method	_	_	416	°C/W	

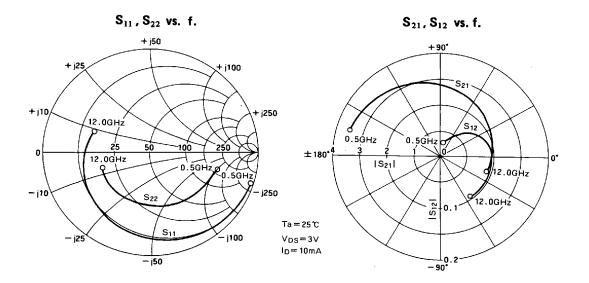





TYPICAL CHARACTERISTICS



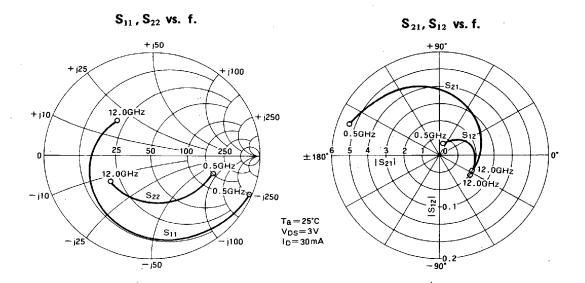




NOISE PARAMETERS (VDS=3V, ID=10mA)

Freq.	I	Copt	Rn	NEmin	
(GHz)	Magn, Angle (deg.)		(Ω)	(dB)	
4	0,649	61.5	28.0	0.96	
8	0.437	138.1	32.0	1,85	
12	0.414	-168.1	15.0	2.76	

Glp and P1dB (Ta=25 $^{\circ}$ C, VD=3V)


	f = 40	GHz	f = 12GHz			
,	I _D = 10mA	I _D =30mA	I _D =10mA	1 _D =30mA		
Glp (dB)	15.5	16.8	9.6	10.5		
P _{1dB} (dBm)	12.6	14.5	10.5	12.7		

S PARAMETERS (Ta=25 $^{\circ}$ C, V_{DS}=3V, I_D=10mA)

Freq.	S	11	S ₂₁		S	12	S ₂₂			MSG/MAG
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	K	(dB)
0.5	0.995	- 17.7	3.463	163.8	0.024	76.2	0.649	- 13.6	0.067	21.6
1.0	0.974	- 27.0	3.378	154.7	0.032	69.2	0.634	- 20.8	0.178	20.2
1.5	0.954	- 36.4	3.293	145.6	0.040	62.3	0.620	- 28.1	0.255	19.2
2.0	0.933	- 45.7	3.208	136.5	0.048	55.3	0.606	- 35.3	0.315	18.3
2.5	0.913	- 55.1	3.123	127.4	0.056	48.4	0.592	- 42.6	0.367	17.5
3.0	0.892	- 64.4	3.038	118.3	0.064	41.4	0.578	- 49.8	0.412	16.8
3.5	0.872	- 73.8	2.953	109.2	0.072	34.5	0.563	- 57.1	0.454	16.1
4.0	0.851	- 83.1	2.868	100.1	0.080	27.5	0.549	- 64.3	0.494	15.5
4.5	0.827	- 92.2	2.772	91.4	0.083	21.1	0.536	- 71.6	0.554	15.2
5.0	0.802	- 101.4	2.676	82.8	0.087	14.7	0.524	- 78.9	0.617	14.9
5.5	0.778	-110.5	2.579	74.1	0.090	8.3	0.511	- 86.2	0.680	14.5
6.0	0.753	-119.6	2.483	65.4	0.094	1.9	0.498	- 93.5	0.747	14.2
6.5	0.736	- 126.4	2.401	58.2	0.095	- 3.1	0.495	- 99.6	0.803	14.0
7.0	0.719	- 133.2	2.319	51.1	0.095	- 8.0	0.493	- 105.8	0.862	13.9
7.5	0.702	- 140.0	2.238	43.9	0.096	- 13.0	0.491	-111.9	0.926	13.7
8.0	0.685	146.8	2.156	36.7	0.097	- 17.9	0.488	- 118.0	0.993	13.5
8.5	0.669	- 153.3	2.109	29.8	0.097	-22.5	0.488	- 123.1	1.053	12.0
9.0	0.652	- 159.8	2.061	23.0	0.098	-27.2	0.487	-128.3	1.115	11.2
9.5	0.636	- 166.2	2.014	16.1	0.098	-31.8	0.487	- 133.4	1.179	10.6
10.0	0.619	- 172.7	1.967	9.2	0.098	-36.4	0.487	-138.5	1,244	10.1
10.5	0.603	- 179.9	1.931	2.0	0.098	-41.1	0.484	- 143.9	1.313	9.6
11.0	0.586	172.9	1.895	- 5.3	0.098	45.8	0.481	- 149.2	1.384	9.2
11.5	0.569	165.7	1.858	- 12.6	0.097	-50.4	0.478	- 154.6	1.458	8.8
12.0	0.553	158.5	1.822	- 19.8	0.097	-55.1	0.475	- 159.9	1.535	8.4

S PARAMETERS ($T_a = 25^{\circ}C$, $V_{DS} = 3V$, $I_D = 30 \text{mA}$)

Freq.	s	11	S	21	S ₁₂		· s	· S ₂₂		MSG/MAG
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	K	(dB)
0.5	0.997	- 22.7	5.280	159.8	0.023	73.1	0.592	- 16.3	0.055	23.7
1.0	0.966	- 33.5	5.084	150.2	0.028	66.5	0.576	- 23.2	0.198	22.6
1.5	0.934	- 44.2	4.889	140.7	0.034	59.8	0.559	- 30.2	0.307	21.6
2.0	0.902	- 54.9	4.694	131.1	0.039	53.1	0.543	- 37.1	0.398	20.8
2.5	0.870	- 65.6	4.499	121.6	0.045	46.4	0.526	- 44.1	0.477	20.0
3.0	0.838	76.4	4.303	112.0	0.050	39.8	0.510	- 51.0	0.550	19.3
3.5	0.807	- 87.1	4.108	102.5	, 0.056	33.1	0.493	- 58.0	0.620	18.7
4.0	0.775	- 97.8	3.913	92.9	0.061	26.4	0.477	- 64.9	0.689	18.1
4.5	0.748	- 107.6	3.730	84.3	0.063	21.4	0.467	- 71.6	0.764	17.7
5.0	0.720	117.5	3.546	75.7	0.065	16.3	0.457	- 78.3	0.846	17.4
5.5	0.693	127.3	3.362	67.1	0.066	11.3	0.447	- 85.0	0.935	17.1
6.0	0.666	- 137.1	3.179	58.5	0.068	6.2	0.437	- 91.7	1.033	15.6
6.5	0.648	144.5	3.050	51.5	0.068	2.7	0,437	- 96.8	1.108	14.5
7.0	0.631	152.0	2.922	44.6	0.069	- 0.8	0.437	- 101.9	1.189	13.7
7.5	0.613	- 159.4	2.793 .	37.6	0.069	- 4.2	0.438	- 106.9	1.278	12.9
8.0	0.595	166.8	2.665	30.6	0.069	- 7.7	0.438	-112.0	1.374	12.2
8.5	0.579	-174.3	2.586	23.7	0.069	-11.0	0.440	-116.7	1.451	11.8
9.0	0.563	178.2	2.507	16.9	0.069	-14.3	0.441	- 121.4	1.531	11.3
9.5	0.547	170.7	2.427	10.0	0.069	- 17.6	0.443	- 126.0	1.617	10.9
10.0	0.531	. 163.2	2.348	3.1	0.069	-20.9	0.445	-130.7	1.707	10.4
10.5	0.516	155.9	2.293	- 4.0	0.070	-24.6	0.445	- 135.1	1.770	10.1
11.0	0.502	148.5	2.238	-11.0	0.070	-28.2	0.444	- 139.5	1.834	9.7
11.5	0.487	141.2	2.183	- 18.1	0.071	-31.9	0.444	- 143.8	1.900	9.4
12.0	0.472	133.8	2.128	-25.1	0.072	-35.5	0.444	- 148.2	1.968	9.1