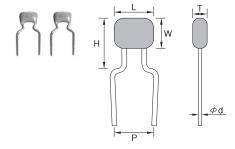
Radial & Axial

Features

This widely used ceramic capacitors includes both monolithic and multilayer types to provide a wide capacitance range of 1pF through 1μ F in respectly one standard size and shape(Radial & Axial).

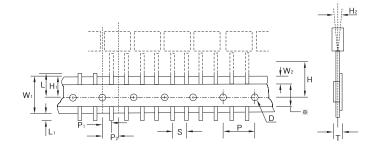
Applications

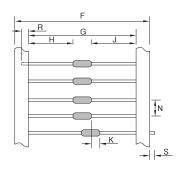

The class1 temperature compensating(C0G) products can be used in circuits to stabilize frequency and temperature characteristics.

The X7R, Z5U, Y5V dielectrics are optimum for by pass capacitors.

Shape and Dimensions

Bulk Type


Radial Type


CODE	L Max.	W Max.	T Max.	H Max.	P ±0.7	Ød	Color	Marking
051B	5.5	5.5	7.0	6.4	-	0.5	Orange or Gold	Esd 104
077B	7.7	7.6	3.2	9.2	0.5	or Gold	Ex) 104	

Flat Type

Radial Type

Axial Type

Code	Dimensions	Tolerance	Code	Dimensions	Tolerance	Code	Dimensions	Tolerance
D(Ø)	4	±0.3	P1	3.85	±0.7	F	64.8	-0, +2
Н	16	±0.5	P2	6.35	±1.3	G	50.8	l~53.3
H1	9	+0.76, -0.5	T	0.9	Max.	Н	=3	±1.2
H2	0	±2	W1	18	±0.5	J	=H	±1.2
L	11	Max.	W2	0	+0.6 Max.	K	0.8	Max.
L1	1.5	Max.	S	5	±0.7	N	5	±0.4
Р	12.7	±0.3	*	No adhesive m	ay be exposed	R	3.2	Min.

How to Order(Product Identification)

Type CR : Radial Lead Type CA : Axial Lead Type

2 Dimension Code

The number shows the maximum length of "L" by 1/10 in millimeter, and the alphabet means lead difference.(Refer to above diagram)

Temperature Characteristice	Temperature Range	Capacitance Change or Temperature Coefficient
C0G	−55 to 125°C	0±30ppm/℃
X7R	−55 to 125°C	±15%
Z5U	10°C to 85°C	+22, -56%
Y5V	−30 to 85°C	+22, -82%

4 Capacitance Code(Pico Farads)

First two digits are significant; third digit denotes number of zeros. Ex.) $101 = 100 \, pF$, $1R5 = 1.5 \, pF$, $103 = 10,000 \, pF$

26 SAMWHA CAPACITOR Co., Ltd.

5 Capacitance Tolerance Code

Code	Tolerance	Remark
J	± 5.0 %	C0G
K	±10 %	X7R, C0G
М	± 20 %	Z5U, X7R
Z	+80, -20%	Z5U, Y5V

6 Rated Voltage Code

Code	250	500	101
Volt	DC 25V	DC 50V	DC 100V

Packing Code

Code	В	R	F
Packing	Bulk	Reel Pack	Flat Pack

Reliability and Test Conditions

			Chara	cteristic				To	t Methods										
No.	Item	Temperature Compensating Type	Hiç	jh Diele	ctric C	onstant	Туре		Condition										
1.	Operating Temperature Range	C0G: -55 to +125℃																	
2.	Insulation Resistance	More than 10,000MΩ o	r)	Applied the rated voltage for 2 minute															
3.	Dielectric Strength	No detects or abnorm		- C0G : The rated voltage × 300% - X7R, Z5U, Y5V : " × 250%															
4.	Capacitance	Within the specified to	Within the specified tolerance							Temperature Compensating Type									
5.		30pF Min.: Q>1000(DE<0.1%)	Char.	50V Min.	25V	16V	10V	Cap.	Testing Frequency	Testing Voltage									
		Q≥1,000(DF≤0.1%) 30pF Max.:	30pF Max.:	30pF Max.:	30pF Max.:	30pF Max.:	30pF Max.:	30pF Max.:		30 _p F Max. : Q>400+20C	30pF Max.:	X7R Z%V	≤2.5% ≤4.0% <5%	≤3% -	≤3.5% -	≤5.0%	C0G (C≤1000pF)	1±0.1MHz	0.5 to 5V rms
		(DF≤1/(400+20C))	$VF \le 1/(400+20C)$) $V_{5V} = \begin{pmatrix} (<220_{1}F) & \le & (<220_{1}F) \\ \le 7\% & 7\% & \le 12.5\% \end{pmatrix} \le 1$	≤12.5%	C0G (C)1000pF)	1±0.1kHz	1±0.2V rms												
			(≥220nF) (≥220nF)						1±0.1kHz	1±0.2V rms									
6.	Terminal Strength	No evidence of dama of terminals.	No evidence of damage to body of device of looseness of terminals.						of 10N(1kgf) one termin on and ac ay from the	nal in the cting in a									

Radial & Axial

7. Resistance Appearance

Change Dissipation Factor(or Q)

I.R.

Capacitance

Change

Dissipation

Factor(or Q)

Appearance

Capacitance

Dissipation

Factor(or Q)

Appearance

Capacitance

change

Change

Temperature Appearance

Soldering

Cycle

Humidity

Load

Characteristic

High Dielectric Constant Type

X7R ≤ 2.5% ≤3% ≤3.5% ≤5.0%

: Within + 7.5% Z5U, Y5V : Within ± 20%

Char. 50V Min. 25V 16V 10V

X7R ≤ 2.5% ≤3% ≤3.5% ≤5.0%

≤7%

≤9%

≤7% (<220_nF) ≤12.5% (≥220_nF) ≤12.5%

≤9% (<220nF) ≤12.5% (≥220nF)

Z5U ≤4.0% -

≤5% (<220nF)

Z5U ≤4.0%

Y5V

More than 10,000 M Ω or 500 Ω , F (Whichever is smaller)

X7R : Within ±12.5% Z5U : Within ±30%

Z5U ≤4.0%

Y5V ≤7.5%

More than $500M\Omega$ or 25Ω , F(whichever is smaller)

Y5V: Within + 30%, -40%

(Y5V/1.0", F. 2.2", F. 4.7", F/10V) Within ±30% (others)

X7R ≤5% ≤5% ≤5% ≤5%

≤10%

X7R: Within ±12.5%, Z5U: Within ±30%

Y5V : Within ±30%(Cap. < 1.0μF) Within +30% , -40% (Cap. $\geq 1.0 \mu$ F)

(<1 µF) ≤12.5% (≥1 µF) ≤12.5% ≤15%

Y5V ≤7% (≥220nF) More than $10,000M\Omega$ or 500Ω , F (whichever & smaller) - Soldering Temp : 260±5℃

Immersion Time : 5±0.5sec

constant type) then measure.

Min.

Operating Temp. +0, -3

(°C)

Max.

Temp.

Temp. Temp. +3, -0

30±3 2 to 3 30±3 2 to 3

Take it out and set it for 24 ± 2 hours

[tempeature compensating or 48±4 hours(high dielectric Type) at room

- Test Voltage : Tge rated voltage - Take it out and set it for 24±2 hours (temperature compensatig) or 48±4 hours(high dielectric constant type)

at room temperature, then measure. The charge/discharge current is less

Testing Time: 1000±12hrs

- Temperature : C0G, X7R → 125±3°C

- Applied Voltage : Rated Voltage × 200%

temperature, than measure,

- Temperature : 40±2°C

- Humidity: 90~95%RH - Hour : 500 ± 12hrs

than 50mA.

- Take it out and set it for 24±2 hours(temperature compensating type)or 48±4hours(high dielectric

Temperature Compensating Type

Within ±2.5% or ±0.25pF X7R

(whichever is larger) Z5U, Y5V : $\leq \pm 20\%$

No marked defect

Q≥1,000 (DF≤0.1%)

30pF Max.:

Q≥400+20C

(DF≤1/(400+20C))

No marking defects

Q≥1.000 (DF≤0.1%)

(DF≤1/(400+20C))

No marking defects

Within ±7.5% or ±0.75pF

(whichever is larger)

30pF Min. :

30nF Max. :

Q≥100+10/3C

Q≥200 (DF≤0.5%)

(DF≤1/(100+10/3C))

Within ±3% or±0.3pF

(whichever is larger)

30₀F Min.:

30pF Max. :

Q > 400+20C

Within ± 2.5% or ±0.25pF X7R

10.

High Temperatur

Radial & Axial

				Chara	teristic					Took Madhada
No.	H	em	Temperature Compensating Type	Hig	h Diele	ectric (Constant	Туре		and Conditions
10	High Temperature Load	Dissipation Factor(or Q)	$30\rho F$ Min.: $Q \ge 350$ (DF $\le 0.3\%$) $10\rho F \le C p \le 30\rho F$: $Q \ge 275 + 5/2 C$ (DF $\le 1/(275 + 5/2 C)$) $10\rho F$ Max.: $Q \ge 200 + 10 C$	Char. X7R Z5U Y5V	50V Min. ≤5% ≤4.0% ≤7.5%	(<1µF) ≤7%	≤12.5%	10V ≤5% - ≤15%	(tempera hours(hig at room) The char	ature compensatig) or 48±4 th dielectric constant type) emperature, then measure. ge/discharge current is less
		I.R.	(DF≤1/(200+10C))	(21µf) 50QF(Whichever is smaller)						
11	Capacitance	Capacitance		-	Ter	np. F	Reference	Cap.		
	Temperature Characteristics	Change		X7R	-58	to	Iemp.	Within ±15%	determ measu	ined using the capacitance red in step 3 as a reference.
				Z5U			25℃	Within +22% -56%	sequer (SL: +25	cycling the temperature ntially from step 1 through 5. is to 85°C) the capacitance shall in the specified tolerance for
				Y5V				Within +22% -82%	the ten The ca dividin	perature coefficient. pacitance drift is calculated g the difference between the
										um measured values in the and 5 by Cap, value in step 3.
		_			(tem 1 1 1 1 1 1 1 1 1	Step	Temperature(°C)			
		Temperature	Char. Temp. Temperature Range Coefficient						1	25±2
		Coefficient	EE to						Take it out and set it for 24. (temperature compensation hours/high dielectric const at room temperature, then The charge/discharge cun than 50mA. (1) Temperature Compensating The temperature coefficic determined using the cap measured in step 3 as a re When cycling the temperature coefficic The capacitance drift is cardividing the difference be maximum measured value step 1, 3 and 5 by Cap, value 1 25±2 2 4 122±3(for CD 5 25±2 2 4 122±3 2 4 12±3(for CD 5 25±2 2 4 12±3 2 4 12±3(fo	
			C0G +125°C ±30ppm/℃							
									(2) High The ra chang value range	Dielectric Constant Type : anges of capacitance ge compared with the 25°C over the temperature shown in the table shall
12	The regulation	al								
13	The regulation destructive r	naterials	Never use the ODS(o regulated this documer		lepletir	ng sub	stance)	materials	below in	leaded MLCC products

Packing Quantity

Unit: pcs

		Radial Type	Axial Type			
Inner Box	Outer Box	Remark	Inner Box	Outer Box	Remark	
2,500	15,000	Packing set on the basis of flat tapping	5,000	50,000	Packing set on the basis of flat tapping	

Capacitance Range

Туре				Radial					Axial				
Char.	CO	G		(7R	Z5U		5V	COG	X7R Z5U		Y5V		
Cap(pF) Volt	50	100	50	100	50	16	50	50	50	50	50		
1 2													
3													
4													
5 6													
7													
8													
9 10													
12													
15													
16 18													
20													
22													
24 27													
30													
33													
36 39													
43													
47													
51 56													
62													
68													
75													
82 91													
100													
120													
150 180													
220													
270													
330 390													
470													
560													
680 820													
1.000													
1.200													
1.500 1.800													
2.200													
2.700													
3.300 3.900													
4.700													
5.600													
6.800 8.200													
10.000													
15.000													
22.000 33.000													
47.000													
68.000													
100.000													
150.000 220.000													
330.000													
470.000													
680.000													