Freescale Semiconductor

Advance Information

Document Number: LP1072 Rev. 0.3, 12/2005

LP1072

802.11a/b/g Baseband System Solution

1 Introduction

1.1 The LP1070 Family

Freescale Semiconductor's 802.11 LP1070 family consists of high-performance, highly optimized PHY and MAC baseband Wireless LAN processors that fully implement the IEEE 802.11a, 802.11b and 802.11g PHY standards. These baseband processors are poised to revolutionize the Wireless LAN industry by setting new standards for power consumption, size, cost and performance.

The LP1070 family is based on Freescale's proprietary Wireless Broadband Signal ProcessorTM (WBSPTM), an innovative and revolutionary receiver architecture that significantly reduces size and power consumption while providing maximum flexibility to support multiple wireless standards with no additional overhead.

In addition to their superior performance and ultra low power consumption, the LP1070 processors provide the customers with the flexibility to tailor the chip characteristics to their needs. With software control, the

Contents

1	Introduction	. 1
2	Specifications	. 3
3	Functional Description	. 4
4	LP1072 Interfaces	10
5	Timers/Reset	16
6	Pinout and Footprint	17
7	DC Electrical Specifications	24
8	Timing Characteristics	26
9	Mechanical Dimensions	29
10	Development Support	29
11	Appendix: Comparison of LP1071 and	
	LP1072	30
10	Revision History	21

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Introduction

terminal manufacturers can tune the chip performance to get the exact balance they opt for when it comes to power consumption and performance.

1.2 General Description

The high-performance LP1072 baseband processor integrates the IEEE 802.11a/b/g PHY and full MAC functionality with the industry's lowest power consumption compared to any baseband processor in the market.

The LP1072 was designed to target embedded devices and small form factor WLAN devices. Its support for SDIO and CompactFlash+ host interfaces combined with its ultra low power consumption and small size make it the optimal solution for mobile devices. It has been designed with a generic RF interface that lets it interface with virtually any RF components in the market. It has been fully tested to interface with RF solutions from Maxim and Airoha, thus providing terminal manufacturers with added flexibility in selecting the most appropriate RF parts based on their application and form factor.

The LP1072's integrated ADC and DAC reduce the terminal manufacturers' bill of material and overall system cost. The integrated internal memory eliminates the need for external MAC memory, further reducing cost and saving valuable board space for small form factor devices.

The LP1072 also provides the highest level of WLAN security by fully supporting WPA and AES.

1.3 Features

- Full compliance with 802.11a/b/g
- Ultra low power consumption, maximizing battery life and minimizing heat dissipation
- Ultra small package: 13.0 x 13.0 x 1.0 (max) mm
- Fully embedded ARM7TDMITM microprocessor for no load on the host processor, leading to maximum flexibility in supporting different host platforms
- Implementations of 802.11e Draft, for support of Quality of Service (QoS) real-time applications
- Support for WPA and AES, for enhanced security
- Automatic power management to reduce power consumption
- On-chip ADC and DAC to reduce system BOM and save on board area
- On-Chip PLL for clock generation
- On-chip ROM/RAM eliminating the need for external MAC memory
- Direct memory access (DMA) to reduce CPU utilization
- High throughput achieved using DMA
- Support of SDIO host interface
- Support of CompactFlash host interface
- Support of 16-bit SRAM emulation mode
- Serial EEPROM interface for initialization and device booting
- Eight General Purpose I/O (GPIO) pins for added flexibility
- UART interface to support diagnostic tools and general data transfer

- JTAG Interface for testing and debugging
- Hardware engines for WEP, TKIP and AES support for less processor load
- Supports Direct Conversion (Zero-IF) radio architecture, saving RF components thus reducing BOM cost and simplifying board layout
- Generic RF interface that lets it work with virtually an WLAN RF components. Currently fully tested with RF from Maxim and Airoha.
- Total PHY flexibility in meeting customer requirements by providing software-controlled trade-off between competing performance metrics

2 Specifications

Table 1. Specifications

Feature	Details
Network Standard Support	IEEE 802.11 a/b/g
Network Architectures	Infrastructure, AdHoc
Data Rates	802.11 a/g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11b:1, 2, 5.5, 11 Mbps
Modulation Techniques	BPSK, QPSK, 16QAM, 64QAM, CCK, OFDM, DSSS
Security	40- and 128-bit WEP, TKIP, WPA, AES
Receiver Sensitivity (Using Maxim RF)	802.11g 802.11b 6 Mbps:—91.0 dBm1Mbps:—97.1 dBm 9 Mbps: —89.7 dBm2 Mbps: —93.6 dBm 12 Mbps: —87.3 dBm5.5Mbps: —92.2 dBm 18 Mbps: —85.8 dBm11Mbps: —89.5 dBm 24 Mbps:—81.4 dBm 36 Mbps: —78.3 dBm 48 Mbps: —74.8 dBm 54Mbps: —73.0 dBm
Power Consumption	Receive:150 mW avg (@54Mbps) Listen: 132 mW Sleep:Less than1 mW
Supply Voltage	I/O: 3.3 ± 0.3 Vdc Core:1.8 ± 5% Vdc
Operating Temperature	0 °C to +70 °C; < 95% humidity
Host Interfaces	SDIO; compliant with SDIO Card Specifications, Version 1.00 CompactFlash+; compliant with CF+ and Compact Flash Specs Rev 2.0 16-bit SRAM emulation mode
Other Interfaces	JTAG 8 GPIO pins One UART Serial EEPROM
Operating System Support	Microsoft Windows CE.net 3.0, 4.2 Microsoft Pocket PC 2002, 2003

Table 1. Specifications (continued)

Feature	Details
Packaging Options	200-pin VFBGA, 13.0 x 13.0 x 1.0(max) mm
Semiconductor Technology	0.18 micron
RF Support	Maxim, Airoha
Certification	Wi-Fi® (incl. WPA), WQHL, FCC Part 15

3 Functional Description

Figure 1 is a functional block diagram of the LP1072.

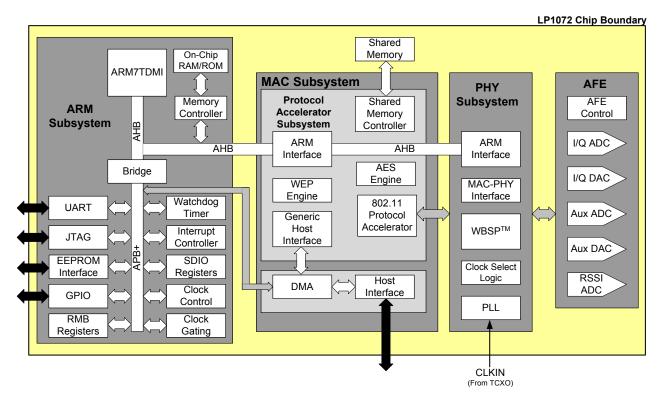


Figure 1. Functional Block Diagram

3.1 Embedded Processor Subsystem

The embedded Processor Subsystem consists of the following:

- An embedded ARM7TDMI microprocessor running at 88 MHz
- An ARMTM Peripheral Subsystem accessed via an extended APB (APB+) bus

3.1.1 **UART**

The UART is used for testing and diagnostic purposes and is capable of supporting data transfer rates of up to 115.2 kbps.

3.1.2 JTAG

TBA

3.1.3 Serial EEPROM Interface

The LP1072 supports an external serial EEPROM for storing the boot loader, MAC address, calibration data and any other vendor-specific data. The LP1072 supports serial EEPROMs of sizes from 8 Kbit (organized as 1024 entries of 8 bits each, or 1024 x 8) up to 512 Kbit (organized as 65,536 x 8). Serial EEPROMs from the following vendors have been tested and verified to work with the LP1072:

- ATMEL (<u>http://www.atmel.com</u>)
- ST Microelectronics (http://www.st.com)
- Microchip Technology (http://www.microchip.com)
- Catalyst Semiconductor (http://www.catsemi.com)
- Integrated Silicon Solutions, Inc. (http://www.issi.com)

The EEPROM is supported through GPIOs. There is no dedicated hardware to support either I²C or SPI serial EEPROMs.

The operating frequency of the serial EEPROM port is 400 kHz with a supply voltage of 3.0 V.

3.1.4 **GPIO**

To support vendor-specific needs, the LP1072 provides eight bi-directional General Purpose Input Output (GPIO) pins. Each pin can be independently configured as an input, output or an interrupt source. On reset, the GPIOs default as inputs, i.e. output drivers enables will be inactive.

3.1.5 RMB Registers

This block contains all the reset logic for both CPUs contained in the BRC and chip-wide reset control. It also defines controls for memory address re-mapping.

3.1.6 Watchdog

TBA

3.1.7 Interrupt Controller

TBA

Functional Description

3.1.8 SDIO Registers

TBA

3.1.9 Clock Control

TBA

3.1.10 Clock Gating

This block contains all the control logic required to gate individual sub-block clocks.

3.2 Media Access Control (MAC) Subsystem

3.2.1 Protocol Accelerator Subsystem (PAS)

The main function of the Protocol Accelerator Subsystem is to provide hardware acceleration functions for the MAC Software to perform the time critical aspects of the 802.11 protocol.

The PAS contains the following:

- Shared Memory Controller provided arbitrated access to the shared memory (MAC memory)
- WEP Hardware Engine
- AES Hardware Engine
- 802.11 Protocol Accelerator for support of time-critical MAC functions
- Generic Host Interface

3.2.2 AES Block

The contents of the AES block are:

- AES encryption/decryption core that performs AES encryption/decryption of a 128bit block.
- Offset Codebook (OCB) mode encipher/decipher wrapper that performs OCB mode key generation for the AES core.
- DMA controller and Shared Memory Interface that controls the reading/writing of data blocks from/to the PAS shared memory controller.
- Control Registers, used to configure the operation of the AES block.

3.2.3 WEP Block

TBA

3.3 PHY Subsystem

TBA

3.4 Analog Front End (AFE)

The Analog Front End (AFE) block consists of three Analog-to-Digital Converters (ADCs) and two Digital-to-Analog Converters (DACs) as given in Table 2.

Table 2. AFE Components

Component	Description	Resolution	Clock
I/Q ADC	A 2-channel ADC whose digital output serves as input to digital baseband and whose input is the differential signal from the RF (RX mode).	8-bit	22 Msps
I/Q DAC	A 2-channel DAC whose digital input is from baseband and output is a differential signal for the RF (TX mode).	8-bit	44 Msps
RSSI ADC	A single ended, single channel ADC	6-bit	10 Msps
Auxiliary ADC	A single ended, single channel ADC	8-bit	1 Msps
Auxiliary DAC	A single ended, single channel DAC	8-bit	20 Msps

3.4.1 I/Q ADC

I/Q ADC specifications are shown in Table 3.

Table 3. I/Q ADC Specifications

Parameter	Condition	Min	Тур	Max	Units
Resolution	_	_	8	_	bit
Maximum Sampling Frequency	_	22	_	_	MHz
Signal Bandwidth	_	_	11	_	MHz
Input impedance	Fixed capacitance	_	1	_	pF
	Switched capacitance @Fs	_	1	_	pF
Latency	_	_	4	_	cycles
Integral Nonlinearity (INL)	_	_	±1.0	_	LSB
Differential Nonlinearity (DNL)	_	_	± 0.5	_	LSB
Total Harmonic Distortion (THD)	Fin= 1MHz	_	-48.5	_	dB
	Fin= 10MHz	_	-47	_	dB
SNR	Fin= 1MHz	_	48.5	_	dB
	Fin= 10MHz	_	47	_	dB
ENOB	Fin= 1MHz	_	7.2	_	bit
	Fin= 10MHz	_	7.0	_	bit
Channel-to-Channel mismatch	Gain	_	0.2	_	dB
	Phase	_	0.5	_	Degree
DC offset after calibration	_	-1	_	+1	LSB

Functional Description

Table 3. I/Q ADC Specifications (continued)

Parameter	Condition	Min	Тур	Max	Units
Wake-up time	From Shutdown	_	_	1	ms
	From Standby			10	μS

3.4.2 I/Q DAC

I/Q DAC specifications are shown in Table 4.

Table 4. I/Q DAC

Parameter	Condition	Min	Тур	Max	Units
Resolution	_	_	8	_	bit
Maximum Update rate	_	44	_	_	MHz
3dB Signal Bandwidth	_	_	11	_	MHz
Output common-mode voltage	_	0.7	Vcmo ¹	1.5	V
Load	_	10	_	_	Kohm
	_	_	_	5	pF
Integral Nonlinearity (INL)	_	_	±1.0	_	LSB
Differential Nonlinearity (DNL)	_	_	± 0.5	_	LSB
Total Harmonic Distortion (THD)	Fin= 1MHz	_	-48.5	_	dB
	Fin= 10MHz	_	-47	_	dB
SNR	Fin= 1MHz	_	48.5	_	dB
	Fin= 10MHz	_	47	_	dB
ENOB	Fin= 1MHz	_	7.2	_	bit
	Fin= 10MHz	_	7.0	_	bit
Channel-to-Channel mismatch	Gain	_	0.2	_	dB
	Phase	_	0.5	_	Degree
DC offset after calibration	_	-1	_	+1	LSB
Wake-up time	From Shutdown	_	_	10	μS
	From Standby	_	_	2	μS

¹ See Analog input pin for definition of I/Q DAC output common-mode level.

3.4.3 RSSI ADC

RSSI ADC specifications are shown in Table 5.

Table 5. RSSI ADC Specifications

Parameter	Condition	Min	Тур	Max	Units
Resolution	_	_	6	_	bit
Maximum Sampling Frequency	_	10	_	6	MHz
Input Voltage Range	_	0	_	6	V
Latency	_	_	3	_	cycles
Integral Nonlinearity (INL)	_	_	±1.0	_	LSB
Differential Nonlinearity (DNL)	_	_	± 0.5	_	LSB
ENOB	Fin= 100 kHz	_	5.5	_	bit

3.4.4 Aux ADC

Aux ADC specifications are shown in Table 6.

Table 6. Aux ADC Specifications

Parameter	Condition	Min	Тур	Max	Units
Resolution	_	_	8	_	bit
Maximum Sampling Rate	_	1	_	_	MHz
Input Voltage Range	_	0	_	AVdd	V
Latency	_	_	9	_	cycles
Integral Nonlinearity (INL)	_	_	±1.0	_	LSB
Differential Nonlinearity (DNL)	_	_	± 0.5	_	LSB
ENOB	Fin= 100 kHz	_	7.2	_	bit
Channel-to-Channel mismatch	Gain	_	0.2	_	dB
	Phase	_	0.5	_	Degree
Wake-up time	From Shutdown	_	_	10	μS
	From Standby	_	_	2	μS

3.4.5 Aux DAC

AUX DAC specifications are shown in Table 7.

Table 7. Aux DAC Specifications

Parameter	Condition	Min	Тур	Max	Units
Resolution	_	_	8	_	bit
Maximum Update rate	_	20	_	_	MHz
Output voltage for full scale input ¹	_	0.1	_	2.4	V
Load	_	5	_	_	kOhm
	_	_	_	10	pF
Propagation delay (tpd)	_	_	5	_	ns
Settling time (ts)	_	_	80	_	ns
Integral Nonlinearity (INL)	_	_	±1.0	_	LSB
Differential Nonlinearity (DNL)	_	_	± 0.5	_	LSB
ENOB	Fin = 1 MHz	_	7.2	_	bit
Wake-up time	From Shutdown	_	_	10	μS
	From Standby	_	_	2	μS

Due to saturation of the output buffer, INL and DNL are not applicable for output voltages below 200 mV. Output is monotonic above 0.1 V.

4 LP1072 Interfaces

4.1 SDIO Host Interface

The LP1072 supports SDIO Card Specifications, Version 1.00 (http://www.sdcard.org). The LP1072 SDIO host interface supports the I/O mode of the SD Card Specifications.

4.1.1 SDIO Supported Features

The features supported by the LP1072 SDIO host interface are:

- SD 1-Bit Mode
- SD 4-Bit Mode
- Low Speed
- Full Speed (25 MHz)
- Interrupt
- CMD52 during Data Transfer
- CMD53 Multi Block Transfer
- Interrupt during 4-bit Multiple Block Data Transfer

Combo Card (I/O mode only)

4.1.2 SDIO Function 0/1

For Function 0 registers descriptions, refer to SDIO Card Specification. For Function 1, the SDIO registers occupy a 128 Kbyte space as defined in the SDIO specification. Figure 2 illustrates SDIO Function 1 128 Kbyte Memory Map and Table 8 details its registers.

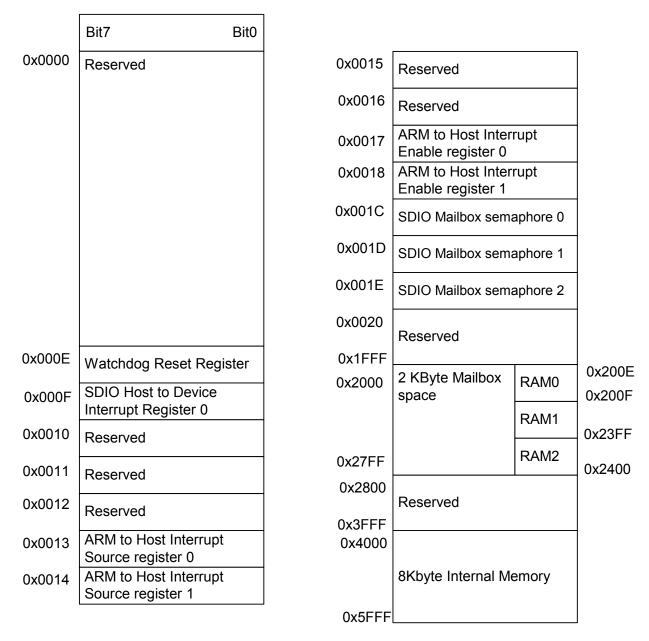


Figure 2. SDIO Function 1 128 Kbyte Memory Map

LP1072 Interfaces

Table 8. SDIO Function 1 Registers

Bit	Name	Description	ARM Access	HOST Access	Reset			
Watchd	Watchdog Status Register (offset 0x000E)							
0	Wdog_reset	This is a read only bit that when '1' indicates that the LP1072 ASIC has had a watchdog reset occur.	R	R	0			
7:1	Reserved	_	_	_	_			
SDIO H	ost to Device Interrupt reque	st register 0 (0x000F)						
7:0	Write_sdio_arm_int	Each bit in this register is 1 of 8 ARM interrupt requests from the SDIO Host to the device ARM. The Host should request an interrupt by writing a "1" to the corresponding bit in this register. The register will be read as a "1" until the ARM clears the register. Once the ARM has cleared the register then the corresponding bit will be read as "0" again.	_	RW	0's			
Device	to SDIO Host Interrupt Sourc	e register 0 (0x0013)	I					
7:0	Arm_to_sdio_int_clr[7:0] for writes. Arm_to_sdio_int_src[7:0] for reads.	This register contains the interrupt pending status of the SDIO Host interrupt from the device. The device is capable of generating up to 8 individual requests. Each bit in this register is ANDed with the corresponding ARM to SDIO Host Interrupt enable register. The ANDed bits are then ORed together to generate a single SDIO Host interrupt in the cccr register space. To clear a particular interrupt bit the SDIO Host should write a "1" to that particular bit in this register.	_	RW	0's			
Device	to SDIO Host Interrupt Source	e register 1 (0x0014)						
2:0	Arm_to_sdio_int_clr[10:8] for writes. Arm_to_sdio_int_src[10:8] for reads.	This register contains the interrupt pending status of the SDIO Host semaphore 0-2 host granted indication. When the Host requests a semaphore the corresponding interrupt will be triggered when the host has been granted the interrupt. Bit 0 is semaphore 0; bit 1 is semaphore 1; and bit 2 is semaphore 2. Each bit in this register is ANDed with the corresponding ARM to SDIO Host Interrupt enable register. The ANDed bits are then ORed together to generate a single SDIO Host interrupt in the cocr register space. To clear a particular interrupt bit the SDIO Host should write a "1" to that particular bit in this register.		RW	0's			
7:3	Reserved	_	-	_	_			

Table 8. SDIO Function 1 Registers (continued)

Bit	Name	Description	ARM Access	HOST Access	Reset
Device	to SDIO Host Interrupt Enabl	e 0 (0x0017)			
7:0	Arm_to_sdio_inte_en[7:0]	Individual bit enables for each of the device to host interrupt source bits. Setting the corresponding bit to a "1" enables the interrupt; "0" disables the interrupt. The SDIO Host can disable all interrupts by disabling the main SDIO host interrupt in the CCCR register.	-	RW	0's
Device	to SDIO Host Interrupt Enabl	e 1 (0x0018)			
2:0	Arm_to_sdio_inte_en[10:8]	Individual bit enables for each of the device to host interrupt source bits. Setting the corresponding bit to a "1" enables the interrupt; "0" disables the interrupt. The SDIO Host can disable all interrupts by disabling the main SDIO host interrupt in the CCCR register. Bit 0 is enable for semaphore 0 granted; bit 1 is semaphore 1; and bit 2 is semaphore 2.	_	RW	0's
7:3	-	Reserved	-	-	-
SDIO H	ost Mailbox Semaphore 0 Re	gister (offset 0x001C)			
1:0	Sdio_mbxp_0_sema	2 bit semaphore register to control whether the host or the device has access to the shared mailbox ram 0. The host should write a "01" to this register to request the shared ram 0. After writing "01" the host should read this register. If the value is "01" then the host owns access to the mailbox. If the value read is "11" then the device owns access to the mailbox. When the host is done utilizing the mailbox then it should release ownership of the mailbox by writing "00" to this register.	RW	RW	0's
7:2	Reserved	-	-	-	-
SDIO H	ost Mailbox Semaphore 1 Re	gister (offset 0x001D)		1	
1:0	Sdio_mbxp_1_sema	2 bit semaphore register to control whether the host or the device has access to the shared mailbox ram 1. The host should write a "01" to this register to request the shared ram 1. After writing "01" the host should read this register. If the value is "01" then the host owns access to the mailbox. If the value read is "11" then the device owns access to the mailbox. When the host is done utilizing the mailbox then it should release ownership of the mailbox by writing "00" to this register.	RW	RW	0's
7:2	Reserved	_	-	-	

LP1072 Interfaces

Table 8. SDIO Function 1 Registers (continued)

Bit	Name	Description	ARM Access	HOST Access	Reset
SDIO H	ost Mailbox Semaphore 2 Re		·		
1:0	Sdio_mbxp_2_sema	2 bit semaphore register to control whether the host or the device has access to the shared mailbox ram 2. The host should write a "01" to this register to request the shared ram 2. After writing "01" the host should read this register. If the value is "01" then the host owns access to the mailbox. If the value read is "11" then the device owns access to the mailbox. When the host is done utilizing the mailbox then it should release ownership of the mailbox by writing "00" to this register.	RW	RW	0's
7:2	Reserved	_	-	-	_
992 byt	e Mailbox RAM 1 (offset 0x20	00F to 0x23FF)			
7:0	Mbox_rdata_1[15:0]	Shared SDIO Mailbox. Both the ARM and Host can use the mailbox for message exchange between the SDIO device and the SDIO Host. Prior to accessing the SDIO Mailbox the Host should request and be granted the mailbox via the mailbox semaphore 1 register described above. Once the Host has been granted access to the mailbox it may read/write the mailbox however it likes. If the Host has not been granted access to the mailbox it will not be able to read or write the mailbox. Once the Host is finished with the mailbox it should release control of the mailbox as described in the mailbox semaphore 1 register.	RW	RW	
1 Kbyte	e Mailbox RAM 2 (offset 0x24	00 to 0x27FF)			
7:0	Mbox_rdata_2[15:0]	Shared SDIO Mailbox. Both the ARM and Host can use the mailbox for message exchange between the SDIO device and the SDIO Host. Prior to accessing the SDIO Mailbox the Host should request and be granted the mailbox via the mailbox semaphore 2 register described above. Once the Host has been granted access to the mailbox it may read/write the mailbox however it likes. If the Host has not been granted access to the mailbox it will not be able to read or write the mailbox. Once the Host is finished with the mailbox it should release control of the mailbox as described in the mailbox semaphore 2 register.	RW	RW	

Table 8. SDIO Function 1 Registers (continued)

Bit	Name	Description	ARM Access	HOST Access	Reset
8 Kbyte	Internal Memory Buffer RAN	(offset 0x4000 to 0x5FFF)			
7:0	Imem_rdat[15:0]	This is an internal memory buffer for specific use by the SDIO device. Data is read or written to this memory via SDIO cmd 53 reads or writes. Then, the SDIO DMA controller is used to move the data from the internal memory buffer to/from shared memory under device (ARM) control.		RW	

4.2 CompactFlash+ Host Interface

The LP1072 supports CF+ and Compact Flash Specification Revision 2.0. The LP1072 CF host interface supports both the I/O and storage modes of the Compact Flash Specifications. The interface allows an external host (or an host DMA) to have 8-bit or 16-bit memory and I/O mode access to the device according to the Compact Flash Specification 2.0.

4.3 SRAM Emulation Mode

The SRAM emulation mode provides an alternative write/read access to the device without using the CF port (or SDIO) using generic SRAM access cycles. It supports 16-bit memory interface.

This mode is host-dependent and can be enabled and tested for a specific host.

4.4 RF Interface

4.4.1 Serial Programmable Interface (SPI)

- The SPI is composed of 3 signals:
- 1. RF_SIF_0_SCLK (serial clock)
- 2. RF_SIF_1_CS_N (chip select)
- 3. RF_SIF_2_DIN (data input)
- The serial information is sent to the RF transceiver in 18 bit bursts framed by chip select. The 18 bits comprises of leading 14 (or less) data bits and trailing 4 address bits
- Programming clock edges are ignored until chip select goes active low.
- All bits are shifted in on the rising edge of the clock and latched in when chip select returns inactive high. (permissible for the clock in either state)
- The interface can be programmed in any operating mode.
- Serial information is clocked in with the most significant bit (MSB) first.
- The address bits for the internal registers are decoded on the rising edge of chip select.
- The rising edge of chip select initiates an internal parallel load pulse that latches the last 18-bit serially shifted-in data into the internal register.

5 Timers/Reset

The TCXO generates the 40MHz RFIC 800 mV clipped sine wave reference clock.

The TCXO output is converted to a digital signal via a clock squarer input pad circuit. The 40 MHz TCXO reference is used to generate the 40 MHz IQDAC clock and the 20 MHz IQADC clock. The PLL synthesizes a reference from the 40 MHz reference. The reference is then used to generate the BRC, ARM, PAS and Symbol Processor clocks, the 44 MHz IQ DAC clock and the 22 MHz IQ ADC clock. When the TCXO and PLL are powered down the only active clock source is the 32 kHz XTAL, a.k.a. the Slow Clock.

The TCXO, PLL and XTAL clock references all include bypass MUXes which allow the individual clock reference to be driven by an external signal.

Figure 3 illustrates the high level clocking of the LP1072 with the associated pins.

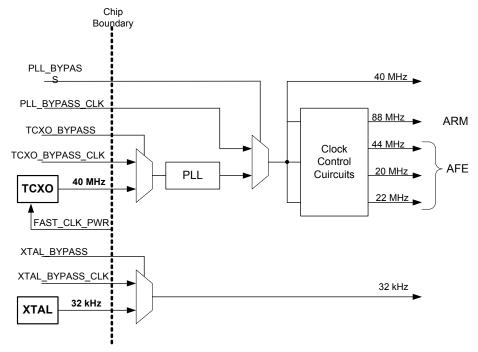


Figure 3. LP1072 Clocks

5.1 System Clock

The LP1072 is clocked using an external crystal oscillator (XO) or a temperature compensated crystal oscillator (TCXO) running at 40MHz with a frequency resolution of \pm 20 ppm or better.

5.2 PLL Block

PLL Bypass

5.3 Low Frequency Clock

The LP1072 uses a low power 32 kHz crystal oscillator to maintain the timing during sleep.

6 Pinout and Footprint

6.1 Pinout

Table 9. Pin Description

Pad Name	Pad Type	e Direction Description		Pin
Power and Ground Pads				
VDD_IO	pvdd2dgz	N/A	3.3V I/O power pad (22 mA per pad max current)	КЗ
VDD_IO	pvdd2dgz	N/A	3.3V I/O power pad (22 mA per pad max current)	P3
VDD_IO	pvdd2dgz	N/A	3.3V I/O power pad (22 mA per pad max current)	M6
VDD_IO	pvdd2dgz	N/A	3.3V I/O power pad (22 mA per pad max current)	N11
VDD_IO	pvdd2dgz	N/A	3.3V I/O power pad (22 mA per pad max current)	R14
VDD_IO	pvdd2dgz	N/A	3.3V I/O power pad (22 mA per pad max current)	E12
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	K5
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	L5
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	L6
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	L8
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	M11
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	K11
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	G11
VSS_IO	pvss2dgz	N/A	I/O ground pad (94mA max current)	F11
VDD_CORE	pvdd1dgz	N/A	1.8V core power pad (31 mA per pad max current)	G1
VDD_CORE	pvdd1dgz	N/A	1.8V core power pad (31 mA per pad max current)	R8
VDD_CORE	pvdd1dgz	N/A	1.8V core power pad (31 mA per pad max current)	M10
VDD_CORE	pvdd1dgz	N/A	1.8V core power pad (31 mA per pad max current)	K15
VDD_CORE	pvdd1dgz	N/A	1.8V core power pad (31 mA per pad max current)	B15
VSS_CORE	pvss1dgz	N/A	Core ground pad (25mA per pad max current)	H5
VSS_CORE	pvss1dgz	N/A	Core ground pad (25mA per pad max current)	L7
VSS_CORE	pvss1dgz	N/A	Core ground pad (25mA per pad max current)	L9
VSS_CORE	pvss1dgz	N/A	Core ground pad (25mA per pad max current)	J11
VSS_CORE	pvss1dgz	N/A	Core ground pad (25mA per pad max current)	E11
VSS_CORE	pvss1dgz	N/A	Core ground pad (25mA per pad max current)	E9
Clocks and Resets and Mo	ode	l	,	
ARM_DBGEN	pdidgz	Input	ARM7TDMI Icebreaker debug enable pin	F3
EMBEDDED_RESET_N	pdisdgz	Input	Embedded board reset	F15
PLL_BYPASS	pdidgz	Input	Bypass the internal PLL and use PLL_BYPASS_CLK	D10
PLL_BYPASS_CLK	pdidgz	Input	PLL bypass clock input	A11

Pinout and Footprint

Table 9. Pin Description (continued)

Pad Name	Pad Type	Direction	Description	Pin
AVDD_PLL	pdiana2p	N/A	Analog 1.8 volt	C1
AVSS_PLL	pdiana2p	N/A	Analog ground	D1
TAVDDPOWER	pvdd3p	N/A	3.3 volt power for ESD Diodes	E3
DVDD_PLL	pdiana2p	N/A	1.8 volt digital power for PLL	E1
DVSS_PLL	pdiana2p	N/A	1.8 volt digital ground for PLL	E2
TXCO_BYPASS	pdidgz	Input	Bypass the TCXO and use the TCXO_BYPASS_CLK	C11
TXCO_BYPASS_CLK	pdidgz	Input	TCXO bypass clock	D11
XTAL_BYPASS	pdidgz	Input	Bypass XTAL osc and use XTAL_BYPASS_CLK	D15
XTAL_BYPASS_CLK	pdidgz	Input	XTAL bypass clock	D13
FAST_CLK_POWER	pdo02cdg	Output	Enable the TCXO	C10
XTAL_32K_XIN	pdxoe4dg	Analog	32kHz crystal (NOTE: Must be placed next to PVDD1DGZ.)	C15
XTAL_32K_XOUT		Analog	32kHz crystal	C14
RESET_N	pdisdgz	Input	Chip Reset	E13
CHIP_MODE0	pdidgz	Input	Chip Mode Select	G2
CHIP_MODE1	pdidgz	Input	0000 = SDIO normal operation 0001 = CF+ normal operation	J1
CHIP_MODE2	pdidgz	Input	All other modes are reserved	НЗ
CHIP_MODE3	pdidgz	Input		K1
JTAG				
JTAG_RESET	pdudgz	Input	Tap reset	P8
JTAG_CLOCK	pdisdgz	Input	Tap clock	M8
JTAG_DI	pdudgz	Input	Tap data in	R10
JTAG_DO	pdo02cdg	Output	Tap data out	N10
JTAG_MODE	pdudgz	Input	Tap Mode	R11
ARM Sub-system Signals				•
ARM_GPIO0	pdb04dgz	Bi-dir	General Purpose I/O	R1
ARM_GPIO1	pdb04dgz	Bi-dir	General Purpose I/O	N3
ARM_GPIO2	pdb04dgz	Bi-dir	General Purpose I/O	R3
ARM_GPIO3	pdb04dgz	Bi-dir	General Purpose I/O	N4
ARM_GPIO4	pdb04dgz	Bi-dir	General Purpose I/O	P4
ARM_GPIO5	pdb04dgz	Bi-dir	General Purpose I/O	N5
ARM_GPIO6	pdb04dgz	Bi-dir	General Purpose I/O	P5
ARM_GPIO7	pdb04dgz	Bi-dir	General Purpose I/O	R5
ARM_UART_0_DI	pdb04dgz	Input	UART input data	N7
ARM_UART_0_DO	pdb04dgz	Output	UART output data	P6
ARM_EEPROM_DAT_GPIO	pdb04dgz	Bi-dir	General Purpose I/O dedicated for EEPROM	M7

Table 9. Pin Description (continued)

Pad Name	Pad Type	Direction	Description	Pin				
ARM_EEPROM_CLK_GPIO	pdb04dgz	Bi-dir	General Purpose I/O dedicated for EEPROM	N8				
SDIO Signals (other signals on interface are 1 Vdd and 2 Vss pins)								
CD/DAT3 (connector pin 1)	pduw04dgz	Bi-dir	Card detect/data 3	H4				
DAT[2] (connector pin 9)	pdu04dgz	Bi-dir	Data 2	K2				
DAT[1] (connector pin 8)	pdu04dgz	Bi-dir	Data 1/interrupt	J4				
DAT[0] (connector pin 7)	pdu04dgz	Bi-dir	Data 0/busy indication	M1				
CMD (connector pin 2)	pdu04dgz	Bi-dir	Command/response	N1				
CLK (connector pin 5)	pdisdgz	Input	Clock	N2				
CF + (PC Card I/O Mode)				1				
CF_D0	pdb04dgz	Bi-dir	CompactFlash data	F2				
CF_D1	pdb04dgz	Bi-dir	CompactFlash data	G4				
CF_D2	pdb04dgz	Bi-dir	CompactFlash data	G3				
CF_D3	pdb04dgz	Bi-dir	CompactFlash data	H1				
CF_D4	pdb04dgz	Bi-dir	CompactFlash data	J2				
CF_D5	pdb04dgz	Bi-dir	CompactFlash data	H2				
CF_D6	pdb04dgz	Bi-dir	CompactFlash data	J3				
CF_D7	pdb04dgz	Bi-dir	CompactFlash data	L1				
CF_D8	pdb04dgz	Bi-dir	CompactFlash data	K4				
CF_D9	pdb04dgz	Bi-dir	CompactFlash data	L2				
CF_D10	pdb04dgz	Bi-dir	CompactFlash data	L3				
CF_D11	pdb04dgz	Bi-dir	CompactFlash data	M2				
CF_D12	pdb04dgz	Bi-dir	CompactFlash data	L4				
CF_D13	pdb04dgz	Bi-dir	CompactFlash data	МЗ				
CF_D14	pdb04dgz	Bi-dir	CompactFlash data	P1				
CF_D15	pdb04dgz	Bi-dir	CompactFlash data	P2				
CF_CE1_N	pdusdgz	Input	CF Card enable even address (8 bit mode)	R2				
CF_CE2_N	pdusdgz	Input	Chip Enable odd address (8 bit mode)	M4				
CF_A0	pdb04dgz	Bi-dir	CompactFlash address	R4				
CF_A1	pdb04dgz	Bi-dir	CompactFlash address	M5				
CF_A2	pdb04dgz	Bi-dir	CompactFlash address	N6				
CF_A3	pdb04dgz	Bi-dir	CompactFlash address	R6				
CF_A4	pdb04dgz	Bi-dir	CompactFlash address	R7				
CF_A5	pdb04dgz	Bi-dir	CompactFlash address	P7				
CF_A6	pdb04dgz	Bi-dir	CompactFlash address	R9				
CF_A7	pdb04dgz	Bi-dir	CompactFlash address	N9				

Pinout and Footprint

Table 9. Pin Description (continued)

Pad Name	Pad Type	Direction	Description	Pin
CF_A8	pdb04dgz	Bi-dir	CompactFlash address	P9
CF_A9	pdb04dgz	Bi-dir	CompactFlash address	P10
CF_A10	pdb04dgz	Bi-dir	CompactFlash address	R13
CF_OE_N	pdusdgz	Input	CF common or attribute memory indication	N12
CF_IORD_N	pdusdgz	Input	I/O read in conjunction with reg and ce1/2	P12
CF_IOWR_N	pdusdgz	Input	I/O write in conjunction with reg and ce1/2	P13
CF_WE_N	pdusdgz	Input	Common or attribute memory write enable	R15
CF_IREQ_N	pdt04dgz	Output	I/O mode interrupt request (pulsed low or level sensitive)	N14
CF_RESET	pdudgz	Input	Reset	P15
CF_CD1_N	pdt04dgz	Output	Card detect	L13
CF_CD2_N	pdt04dgz	Output	Card detect	K12
CF_INPACK_N	pdt04dgz	Output	Decode indication (not widely implemented)	J12
CF_STSCHG_N	pdo04dgz	Output	Status Change	K14
CF_REG_N	pdusdgz	Input	Cycle indication	J14
AFE Interface	<u> </u>			•
AGND	pdiana2p	N/A	Analog ground Double bonded with Analog Reference negative supply)	E6
AGNDIQADC	pdiana2p	N/A	Analog ground	E8
AGNDIQDAC	pdiana2p	N/A	Analog ground	D8
AVDD	pdiana2p	N/A	Analog 3.3 volt	А3
AVDDIQADC	pdiana2p	N/A	Analog 3.3 volt	D7
AVDDIQDAC	pdiana2p	N/A	Analog 3.3 volt	A9
VDDIQADC	pvdd3p	N/A	3.3 volt power for ESD Diodes	A4
VSSIQADC	pvss3p	N/A	3.3 volt ground for ESD Diodes	E7
VDDIQDAC	pvdd3p	N/A	3.3 volt power for ESD Diodes	D2
DGND	pvss1dgz	N/A	Digital Ground	B2
DVDD	pvdd1dgz	N/A	Digital 1.8 Volt	C2
IBIAS	pdiana2p	N/A	Pin for monitoring or bypassing bias current, flowing out of the pin to agnd.	В3
VBG	pdiana2p	N/A	Voltage reference pin for decoupling (equal to 1.25V). Connect 1uF(ceramic) + 100nF (ceramic) to agndref.	B5
VREFN	pdiana2p	Input	ADC Negative reference for decoupling	A5
VREFP	pdiana2p	Input	ADC Positive reference for decoupling	A7
AUXADCIN_0	pdiana2p	Input	Muxed analog input to auxiliary ADC bit 0	C5
AUXADCIN_1	pdiana2p	Input	Muxed analog input to auxiliary ADC bit 1	D5
AUXADCIN_2	pdiana2p	Input	Muxed analog input to auxiliary ADC bit 2	B4

Table 9. Pin Description (continued)

Pad Name	Pad Type	Direction	Description	Pin
IADCINN	pdiana2p	Input	Negative input of I-ADC	A8
IADCINP	pdiana2p	Input	Positive input of I-ADC	B8
QADCINN	pdiana2p	Input	Negative input of Q-ADC	В6
QADCINP	pdiana2p	Input	Positive input of Q-ADC	C6
RSSIADCIN	pdiana2p	Input	RSSI ADC input	B1
VOCM	pdiana2p	Input	Input pin for definition of IQDAC output common -mode level	D9
AUXDACOUT	pdiana2p	Output	Auxiliary DAC output	C4
IDACOUTP	pdiana2p	Output	Positive output of I-DAC	В9
IDACOUTN	pdiana2p	Output	Negative output of I-DAC	C9
QDACOUTP	pdiana2p	Output	Positive output of Q-DAC	B10
QDACOUTN	pdiana2p	Output	Negative output of Q-DAC	A10
EXT_BIAS	pdiana2p	Input	External Bias for test	D4
TCXO Squarer	•			
AVDD_TCXO	pvdd3p	N/A	Analog 3.3 volt	F4
AVSS_TCXO	pvss3p	N/A	Analog ground	G5
CLKIN	pdiana2p	Input	TCXO reference clock input	F1
RF Interface Signals	1	<u> </u>		
RF_ANALOG_LDO	pdb04dgz	Bi-dir	LDO enable for RF VCO power. Driven by PHY controller.	M9
RF_EN	pdb04dgz	Bi-dir	RF enable. Driven by PHY controller.	R12
RF_RXEN	pdb04dgz	Bi-dir	RF Rx enable. Driven by PHY controller.	P11
RF_TXEN	pdb04dgz	Bi-dir	RF Tx enable. Driven by PHY controller.	N13
RF_PAEN1	pdb04dgz	Bi-dir	RF PA enable 1. Driven by PHY controller.	P14
RF_PAEN2	pdb04dgz	Bi-dir	RF PA enable 2. Driven by PHY controller.	M13
RF_SPARE1	pdb04dgz	Bi-dir	RF spare 1 (not used). Driven by PHY controller.	L12
RF_SPARE2	pdb04dgz	Bi-dir	RF spare 2 (not used). Driven by PHY controller.	G13
RF_VGA6	pdb04dgz	Bi-dir	RF VGA setting. Driven by UWA.	M14
RF_VGA5	pdb04dgz	Bi-dir	RF VGA setting. Driven by UWA.	N15
RF_VGA4	pdb04dgz	Bi-dir	RF VGA setting. Driven by UWA.	M15
RF_VGA3	pdo02cdg	Output	RF VGA setting. Driven by UWA.	K13
RF_VGA2	pdo02cdg	Output	RF VGA setting. Driven by UWA.	L14
RF_VGA1	pdo02cdg	Output	RF VGA setting. Driven by UWA.	L15
RF_VGA0	pdo02cdg	Output	RF VGA setting. Driven by UWA.	J13
RF_RXHP	pdo02cdg	Output	RF Rx highpass filter setting. Driven by UWA.	H12
RF_ANTENNA_SEL	pdo02cdg	Output	RF antenna select. Driven by ARM.	H13
RF_ANTENNA_SEL_N	pdo02cdg	Output	RF antenna select. Driven by ARM.	J15

Pinout and Footprint

Table 9. Pin Description (continued)

Pad Name Pad Type Direction		Description	Pin	
RF_SIF_2_DIN	pdo02cdg	Output	RF 3-wire serial interface. Driven by ARM.	G12
RF_SIF_1_CS_N	pdo02cdg	Output	RF 3-wire serial interface. Driven by ARM.	H14
RF_SIF_0_SCLK	pdo02cdg	Output	RF 3-wire serial interface. Driven by ARM.	G15
RF_LOCK_DETECT	pdidgz	Input	RF lock detect. Read by ARM.	G14

6.2 Pad Descriptions

pdxoe4dg 32 kHz crystal pad (1 pad w/2 pad connections)

pdisdgz Schmitt triggered input 5 Volt tolerant

pdidgz 5 Volt tolerant input pad

pdudgz 5 Volt tolerant input pad w/internal pullup

pdusdgz Schmitt Trigger Input Pad, 5V-Tolerant w/pullup

pdddgz Input Pad With Pulldown, 5-VT IO

pdo02cdg CMOS 2 mA output pdo04cdg CMOS 4 mA output

pdb04dgz CMOS 3 state output pad w/input (5 volt tolerant)
pdb02dgz CMOS 3 state output pad w/input (5 volt tolerant)

pdu02sdgz CMOS 3-State Output Pad with Schmitt Trigger Input and Pullup, 5V-Tolerant

pdd04dgz CMOS 3-State Output Pad with Input and Pulldown, 5V-Tolerant pdd04dgz CMOS 3-State Output Pad with Input and Pulldown, 5V-Tolerant pdd08dgz CMOS 3-State Output Pad with Input and Pulldown, 5V-Tolerant

pdt04dgz CMOS 3-State Output Pad, 5V-Tolerant

pdu02dgz CMOS 3-State Output Pad with Input and Pullup, 5V-Tolerant

pduw02dgz 3-State Output Pad with Input and Enable Controlled Pull-Up, 5V-Tolerant

pdiana2p Low Frequency Analog I/O for use with power cut diodes (Note: It is recommended to utilize the

secondary ESD protection circuit: ESND on these pads.

6.3 Footprint

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	NC	NC	AVDD	PVDD3P _2	VREFN	NC	VREFP	IADCINN	AVDDIQDAC _1	QDACOUTN		RE- SERVED	NC	NC	NC
В	RSSIADC IN	DGND	IBIAS	AUXADC IN_2	VBG	QADCINN	NC	IADCINP	IDACOUTP	QDACOUTP	RE- SERVED	NC	NC	NC	VDD_CORE _5
С	AVDD_ PLL	DVDD	NC	AUXDAC OUT	AUXADC IN_0	QADCINP	NC	NC	IDACOUTN	FAST_CLK _POWER	TCXO_ BYPASS	NC	NC	XTAL_ 32K_ XOUT	XTAL_32K_ XIN
D	AVSS_ PLL	PVDD3P _1	NC	EXT_ BIAS	AUXADC IN_1	NC	AVDDIQADC	AGNDIQ DAC_1	VOCM	PLL_ BYPASS	TCXO_ BYPASS _CLK	RE- SERVED	XTAL_ BYPASS _CLK	RE- SERVED	XTAL_ BYPASS
Ε	DVDD_ PLL	DVSS_ PLL	TAVDD POWER	PVSS3P _1	AGND	AGND	PVSS3P_2	AGNDIQ ADC	GND	GND	GND	VDD_IO_ 6	RESET_N	RE- SERVED	RE- SERVED
F	CLKIN	CF_D_0	ARM_ DBGEN	AVDD_ TCXO	TAVSSP OWER						GND	RE- SERVED	RE- SERVED	RE- SERVED	EMBEDDED _RESET_N
G	VDD_ CORE _1	CHIP_ MODE _0	CF_D_2	CF_D_1	AVSS_ TCXO						GND	RF_SIF_ 2_DIN	RF_ SPARE2	RF_ LOCK_ DETECT	RF_SIF_0_ SCLK
Н	CF_D_3	CF_D_5	CHIP_ MODE_ 2	SD_DAT _3	GND						GND	RF_ RXHP	RF_ ANTENNA _SEL	RF_SIF_ 1_CS_N	RE- SERVED
J	CHIP_ MODE _1	CF_D_4	CF_D_6	SD_DAT _1	GND						GND	CF_ INPACK_ N	RF_VGA_ 0	CF_REG _N	RF_ ANTENNA _SEL_N
K	CHIP_ MODE _3	SD_DAT_ 2	VDD_IO _1	CF_D_8	GND						GND	CF_CD2_ N	RF_VGA_ 3	CF_ STSCHG _N	VDD_ CORE_4
L	CF_D_7	CF_D_9	CF_D_ 10	CF_D_12	GND	GND	GND	GND	GND	GND	GND	RF_ SPARE1	CF_CD1_ N	RF_VGA _2	RF_VGA_1
	0	CF_D_11	13	CF_CE2 _N		VDD_IO_3	EEPROM_ DAT_GPIO	JTAG_ CLOCK	RF_ ANALOG _LDO	VDD_CORE _3	GND	NC	RF_PAEN 2	_6	
N	SD_CMD	SD_CLK	ARM_ GPIO_1	ARM_ GPIO_3	ARM_ GPIO_5	CF_A_2	ARM_ UART _0_DI	ARM_ EEPROM _CLK_ GPIO	CF_A_7	JTAG_DO	VDD_IO_ 4	CF_OE_ N	RF_ TXEN	CF_IREQ _N	RF_VGA_5
Р	CF_D_14		VDD_IO _2	ARM_ GPIO_4	ARM_ GPIO _6	ARM_ UART _0_DO	CF_A_5	JTAG_ RESET	CF_A_8	CF_A_9	RF_RXE N	CF_ IORD_N	CF_ IOWR_N	RF_ PAEN1	CF_ RESET
R	ARM_ GPIO_0	CF_CE1_ N	ARM_ GPIO_2	CF_A_0	ARM_ GPIO_7	CF_A_3	CF_A_4	VDD_ CORE_2	CF_A_6	JTAG_DI	JTAG_ MODE	RF_EN	CF_A_10	VDD_IO_ 5	CF_WE_N

7 DC Electrical Specifications

7.1 Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage (3.0 V)	-0.3	4.0	V
Supply Voltage (1.8 V)	-0.3	2.2	V
Input Voltage	GND - 0.3	VDD + 0.3	V
DC Output Current	TBD	TBD	mA
Storage Temperature	TBD	TBD	°C
Electrostatic Discharge Voltage	TBD	TBD	V

Operating the LP1072 under conditions that exceed Absolute Maximum Ratings may result in permanent damage to the device. Absolute maximum ratings are limiting values, and are considered individually, while all other parameters are within their specified operating ranges.

7.2 Recommended Operating Conditions

Recommended operating conditions are shown in Table 11.

Table 11. Recommended Operating Conditions

Parameter	Symbol	Min	Max	Units
Supply I/O Voltage	V _{DD} _IO	3.0	3.6	V
Supply Core Voltage	V _{DD} _C	1.71	1.89	V
Operating Temperature	T _A	0	70	°C

Thermal dissipation (for multi-layer PCB) is shown in Table 12.

Table 12. Thermal Dissipation (for multi-layer PCB)

# DCB Lovere	# PCB Vias	PCB Trace		θ _{JA} (°C/W)	ΨЈТ	$\theta_{ m JC}$	
# PCB Layers	# PCB Vias	Density	0 m/s	1 m/s	2 m/s	(°C/W)	(°C/W)
1 (1s)	0	JEDEC	96.1	68.9	59.6	1.0	6.5
2 (26)	36	JEDEC	81.7	60.2	52.6	0.9	6.2
2 (2s)	0	6%	66.9	51.3	45.8	0.7	6.0

7.3 DC Characteristics

DC characteristics are shown in Table 13.

Table 13. DC Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Units
Pre-driver Supply Voltage	V_{DD}	_	1.62	1.8	1.98	V
I/O Supply Voltage	V _{D33}	_	3.0	3.3	3.6	V
Low-level input voltage	V _{IL}	_	-0.3	_	0.8	V
High-level input voltage	V _{IH}	_	2.0	_	5.5	V
Threshold point	V _T	_	1.46	1.58	1.75	V
Schmitt Trigger Low to High Thresh	V_{T+}	Schmitt	1.47	1.50	1.50	V
Schmitt Trigger High to Low Thresh	V _{T-}	Schmitt	0.90	0.94	0.96	V
Input Leakage Current	I _I	V _I =V _{D33} or 0V	-10	_	10	μΑ
3-state leak current	I _{OZ}	V _{OH} = V _{SS}	-10	_	10	μΑ
		$V_{OL} = V_{DD}$	-10	_	10	μΑ
Output low voltage	V _{OL}	I _{OL} = 2,4,, 24mA	_	_	0.4	V
Output high voltage	V _{OH}	I _{OH} =2,4,, 24mA	2.4	_	_	V
Low Level Out Current @V _{OL} =0.4V	I _{OL}	2 mA	2.2	3.3	3.8	mA
		4 mA	4.5	6.6	7.6	mA
		8 mA	TBA	TBA	TBA	mA
		12 mA	1	19.7	22.7	mA
		16 mA	TBA	TBA	TBA	mA
		24 mA	2	39.5	45.4	mA
High Level Out Current @V _{OH} =2.4V	I _{OH}	2 mA	TBA	TBA	TBA	mA
		4 mA	TBA	TBA	TBA	mA
		8 mA	12.3	24.8	38	mA
		12 mA	18.5	37.1	56.9	mA
		16 mA	22.7	49.5	75.9	mA
		24 mA	36.9	74.3	113.9	mA

8 Timing Characteristics

8.1 AFE Interface

8.1.1 I/Q ADC

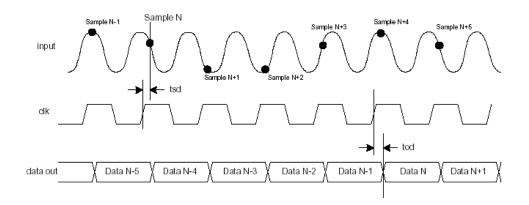


Figure 4. Timing of the Pipelining Operation in I/Q ADC

8.1.2 I/Q DAC

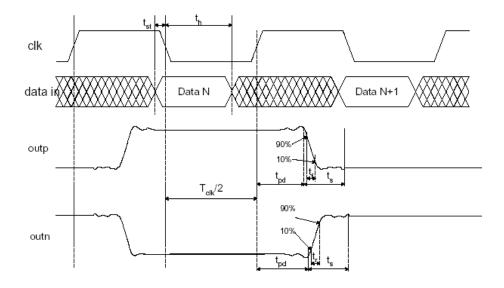


Figure 5. Timing Diagram of the I/Q DAC Inputs and Outputs

8.1.3 RSSI ADC

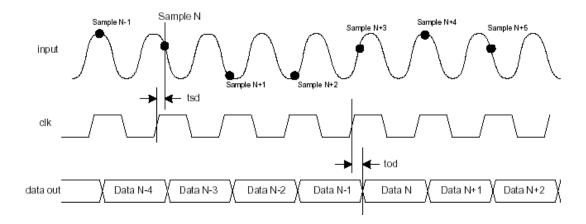


Figure 6. Timing of the RSSI ADC Pipelining Operation

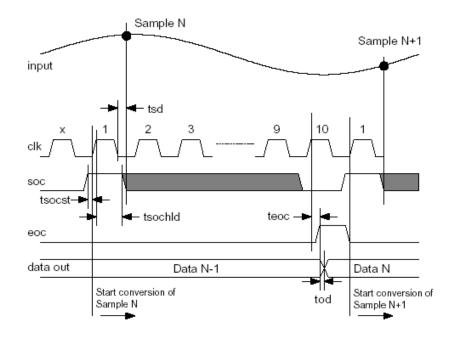


Figure 7. Timing of the Aux ADC Successive Approximation Operation

8.1.4 Auxiliary DAC

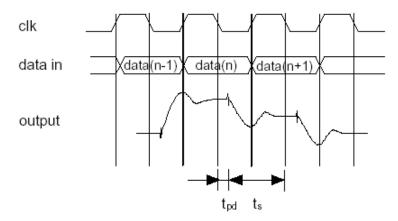


Figure 8. Conversion Cycle in Normal Operation for Aux DAC

Table 14. Aux DAC Timing Parameters

Symbol	Parameter	Min	Тур	Max	Units
tpd	Propagation delay	_	5	_	ns
ts	Settling time	_	80	_	ns

9 Mechanical Dimensions

The LP1072 is a 200-pin Very-thin Fine-pitch Ball Grid Array (VFBGA) package. All dimensions are mm.

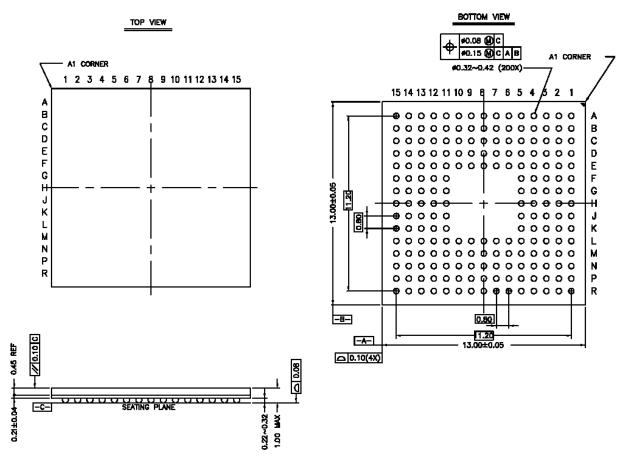


Figure 9. LP1072 Package

10 Development Support

In addition to the LP1072 baseband and MAC, Freescale provides developers with reference designs, development platform, software drivers, system development software, testing and debugging tools and a full set of technical documentation that includes:

- User Guide
- Data Sheet
- Schematics
- Gerber Files
- Application Notes

Freescale also provides multi-interface reference designs to aid device manufacturers with today's demanding time-to-market requirements.

11 Appendix: Comparison of LP1071 and LP1072

Table 15. Comparison of LP1071 and LP1072

Item	LP1071	LP1072	
Network Standard Support	IEEE 802.11 a/b/g		
Network Architectures	Infrastructure, AdHoc		
Data Rates	802.11 a/g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11b: 1, 2, 5.5, 11 Mbps		
Modulation Techniques	BPSK, QPSK, 16QAM, 64QAM, CCK, OFDM, DSSS		
Security	40- and 128-bit WEP, TKIP, WPA, AES		
Receiver Sensitivity ¹	802.11g802.11b 6 Mbps:—91.0 dBm1 Mbps:—97.1 dBm 9 Mbps: —89.7 dBm2 Mbps:—93.6 dBm 12 Mbps: —87.3 dBm5.5Mbps:—92.2 dBm 18 Mbps: —85.8 dBm11Mbps:—89.5 dBm 24 Mbps: —81.4 dBm 36 Mbps: —78.3 dBm 48 Mbps: —74.8 dBm 54Mbps: —73.0 dBm		
Power Consumption	Receive:150 mW avg (@54Mbps) Listen:132 mW Sleep:Less than 1 mW		
Supply Voltage	I/O: 3.0 – 3.6 Vdc Core:1.8 ± 5% Vdc		
Operating Temperature	0 °C to +70 °C; < 95% humidity		
Host Interface	SDIO	SDIO CompactFlash Plus (CF+) 16-bit SRAM emulation mode	
Other Interfaces	JTAG, 8 GPIOs, 1 UART, Serial / EEPROM		
Operating System Support	Microsoft Windows CE.net 3.0 and 4.2 Microsoft Pocket PC 2002, 2003		
Package	144-pin VFBGA, 9 x 9 x 1.0 mm	200-pin VFBGA, 13 x 13 x 1.0 mm	
Semiconductor Technology	0.18 micron		
RF Support	Airoha, Maxim		
Reference Designs	SDIO	CF+	
Certification	Wi-Fi (incl. WPA), WHQL, FCC Part 15		

Using Maxim RF

12 Revision History

This document's updated format reflects that Freescale Semiconductor, Inc. acquired CommASIC on October 20, 2005. Since the release of the previous version of this document (Rev. 0.2), the technical content has not been updated.

How to Reach Us:

Home Page: www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Technical Information Center Schatzbogen 7 Schatzbogen / 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Freescale Semiconductor Japan Ltd. Headquarters neadquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. **Technical Information Center** 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM and ARM7TDMI are the registered trademarks of ARM Limited.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Document Number: LP1072 Rev. 0.3

12/2005