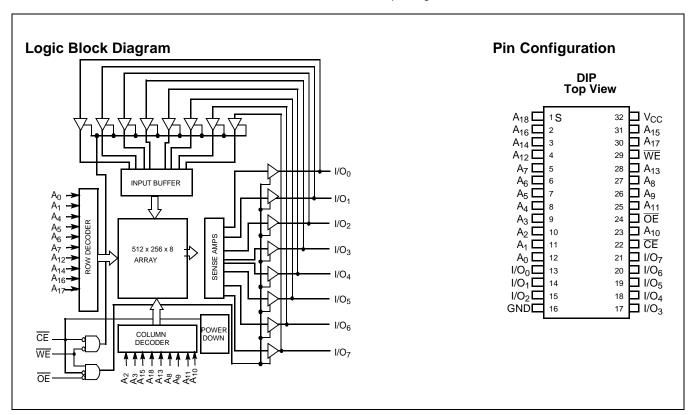


Features

- 4.5V-5.5V operation
- CMOS SRAM for optimum speed and power
- Low active power (165 mW max.)
- Low standby power (L Version)—(110 μW max)
- 2V data retention (L Version)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs

Functional Description


The CYM1465A is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE), an active LOW Output Enable (OE), and three-state drivers. This device has

512K x 8 PDIP Static RAM

an automatic power-down feature that reduces power consumption by more than 99% when deselected.

<u>Writing</u> to the SRAM <u>is_accomplished</u> when the chip select (\overline{CS}) and write enable (\overline{WE}) inputs are both LOW. Data on the eight input/output pins (I/O_0 through I/O_7) of the device is then written into the memory location specified on the address pins (A_0 through A_{18}). Reading from the device is <u>accomplished</u> by taking chip select (\overline{CE}) and output enable (\overline{OE}) LOW while write enable (\overline{WE}) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_0 through A_{18}) will appear on the eight appropriate data input/output pins (I/O_0 through I/O_7). The eight input/output pins (I/O_0 through I/O_7) are placed <u>in a</u> high impedance state when the <u>device</u> is deselected (\overline{CE} HIGH), the <u>outputs</u> are dis<u>abled</u> (\overline{OE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

The CYM1465A is available in a 32-pin 600-mil wide body PDIP package.

Selection Guide

	CYM1465A-70	CYM1465A-85
Maximum Access Time (ns)	70	85
Maximum Operating Current (mA)	20	20
Maximum Standby Current (μA)	20	20

Maximum Ratings

(Above which the useful life may be impaired.) Storage Temperature-55°C to +150°C Ambient Temperature with Power Applied......-10°C to +85°C Supply Voltage to Ground Potential.....-0.5V to +7.0V

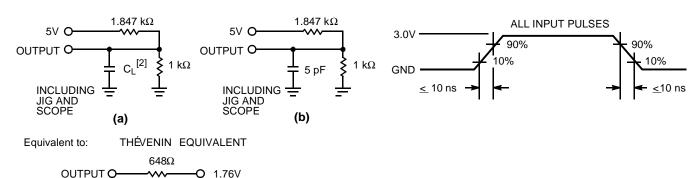
DC Voltage Applied to Outputs

in High Z State -0.5V to +7.0V

DC Input Voltage-0.5V to +7.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%


Electrical Characteristics Over the Operating Range

			CY	CYM1465A		
Parameter	Description	Test Conditions		Max.	Unit	
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -1.0 mA	2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1 mA		0.4	V	
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage		-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-1	+1	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \le V_{IL}$		20	mA	
I _{SB1}	Automatic CS Power-Down Current	Max. V _{CC} , CE ≥ V _{IH} , Min. Duty Cycle = 100%		1.5	mA	
I _{SB2}	Automatic CS Power-Down Current	Max. V_{CC} , $\overline{CE} > V_{CC} - 0.3V$, $V_{IN} > V_{CC} - 0.3V$ or $V_{IN} < 0.3V$		20	μА	

Capacitance^[1]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads and Waveforms

Notes:

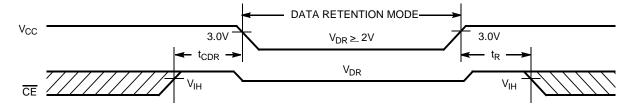
- Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5V, input levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance for 85-, 100-, 120-, and 150-ns speeds. $C_L = 30$ pF for 70-ns speed.

Switching Characteristics Over the Operating Range^[2]

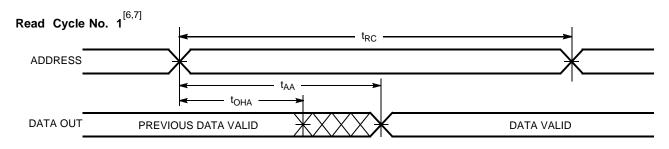
		CYM14	165A-70	CYM14	165A-85	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE		1	1	•		•
t _{RC}	Read Cycle Time	70		85		ns
t _{AA}	Address to Data Valid		70		85	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		70		85	ns
t _{DOE}	OE LOW to Data Valid		35		45	ns
t _{LZOE}	OE LOW to Low Z	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[3]		25		30	ns
t _{LZCS}	CE LOW to Low Z	10		10		ns
t _{HZCS}	CE HIGH to High Z ^[3]		25		30	ns
t _{PU}	CE LOW to Power Down	0		0		
t _{PD}	CE HIGH to Power Down		70		85	
WRITE CYCLE ^[4]		1	1	•		•
t _{WC}	Write Cycle Time	70		85		ns
t _{SCE}	CE LOW to Write End	60		75		ns
t _{AW}	Address Set-Up to Write End	60		75		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	55		65		ns
t _{SD}	Data Set-Up to Write End	30		35		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z	5		5		ns
t _{HZWE}	WE LOW to High Z ^[3]		25		30	ns

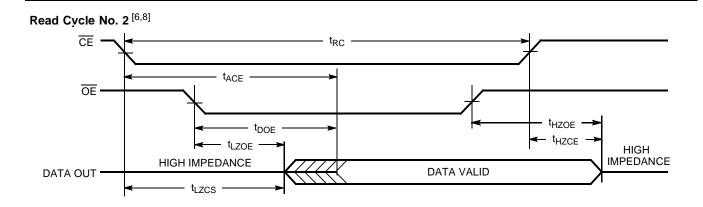
Data Retention Characteristics Over the Operating Range (L Version Only)

			Commercial		Industrial			
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit	
V_{DR}	V _{CC} for Retention Data		2		2		V	
I _{CCDR3}	Data Retention Current	No Input may exceed		20		20	μΑ	
t _{CDR} ^[5]	Chip Deselect to Data Retention Time	Vcc+0.3V Vcc = 3.0V	0		0		ns	
t _R ^[5]	Operation Recovery Time	$\begin{array}{l} V_{DR} = 3.0V, \\ \overline{CE} > V_{CC} - 0.3V, \\ V_{IN} > V_{CC} - 0.3V \text{ or } \\ V_{IN} < 0.3V \end{array}$	t _{RC}		t _{RC}		ns	


Notes:

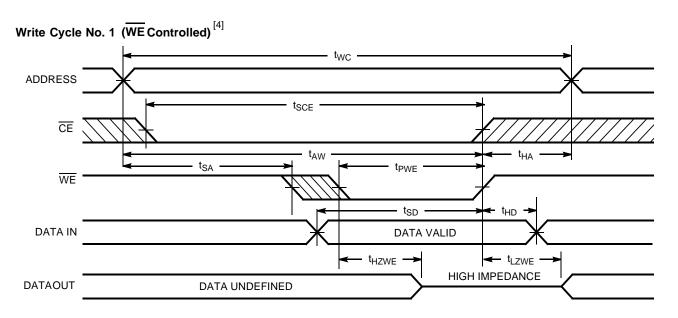
- C_L = 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 Guaranteed, not tested.

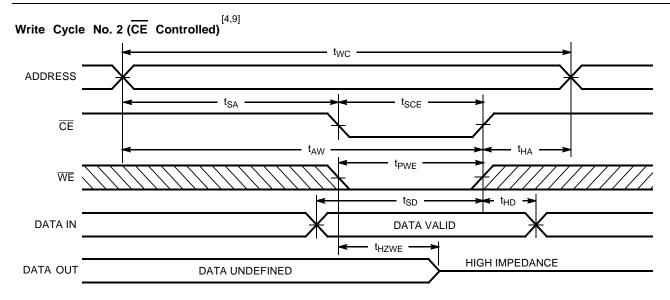

Document #: 38-05269 Rev. **



Data Retention Waveform

Switching Waveforms




Notes:

- WE is HIGH for read cycle.
 Device is continuously selected, CE = V_{|L}.
 Address valid prior to or coincident with CE transition LOW.

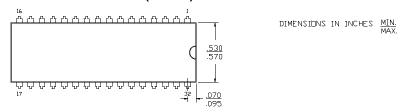
Switching Waveforms (continued)

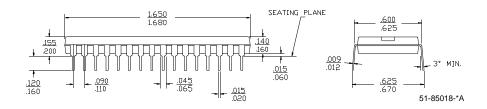
Note:

9. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Truth Table

Inputs				
CE	WE	OE	Output	Mode
Н	Χ	Χ	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read Word
L	L	Χ	Data In	Write Word
L	Н	Н	High Z	Deselect




Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CYM1465ALPD-70C	P19	32-Pin DIP Module	Commercial
70	CYM1465ALPD-70I	P19	32-Pin DIP Module	Industrial
85	CYM1465ALPD-85C	P19	32-Pin DIP Module	Commercial
85	CYM1465ALPD-85I	P19	32-Pin DIP Module	Industrial

Package Diagram

32-Lead (600-Mil) Molded DIP P19

Revision History

Document Title: CYM1465A 512K x 8 PDIP Static RAM Document Number: 38-05269							
REV.	ECN NO.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE			
**	114171	3/19/02	DSG	Change from Spec number: 38-M-00036 to 38-05269			