Features

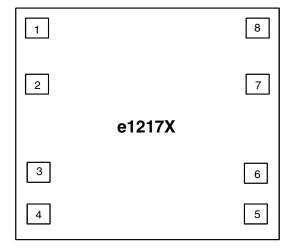
- 32-kHz Oscillator
- 1.3 V to 1.8 V Operating-voltage Range
- 180 nA Typical Current Consumption
- Voltage Regulator
- Integrated Capacitors, Mask Selectable
- Mask Options for Pad Designation, Motor Period and Motor Pulse Width
- Low Resistance Outputs for Bipolar Stepping Motor
- Motor Fast-test Function

Description

The e1217X is an integrated circuit in CMOS silicon gate technology for analog watches. It consists of a 32-kHz oscillator, frequency dividers down to 1/64 Hz, output pulse formers and push-pull motor drivers. Integrated capacitors are provided (select-able mask option) for tuning of the crystal. Low current consumption and high oscillator stability are enabled by an on-chip voltage regulator.

32-kHz Standard Watch CMOS IC

e1217X


4728A-CLOCK-06/03

Pad Configuration

Figure 1. Pinning

 $Chip size 1.06 \ mm \times 1.02 \ mm \\ Pad size: 112 \ \mum \times 112 \ \mum \\ Pad window: 100 \ \mum \times 100 \ \mum \\$

Pin Description

Pin	Symbol	unction					
1, 4	V _{SS}	Negative supply voltage					
5, 6, 8	V _{DD}	Positive supply voltage					
1 to 4	OSCIN/OSCOUT	Oscillator input/output					
(7/5) or (7/6)	MOT 1/2	Motor drive outputs					
1 to 5, 8	RESET	Reset input					
1 to 5, 8	TEST	Test input/output					

e1217X 🛾

2

Functional Description

Voltage Regulator	An integrated voltage regulator provides the oscillator with a well-controlled negative supply voltage V_{REG} . This improves the stability of the oscillator and keeps current consumption at a minimum.						
Oscillator	The oscillator inverter with feedback resistor generates the 32768 Hz clock frequency. A total capacitance of 24 pF is integrated. This can be selected for COSCOUT in 2 pF increments via a mask option.						
Frequency Divider	A 21-bit binary counter is provided, dividing the oscillator frequency down to 1/64 Hz. The leading six stages are connected to V_{DD} and V_{REG} , while the remaining 15 stages are connected to V_{DD} and V_{REG} , while the remaining 15 stages are connected to V_{DD} and V_{SS} .						
Motor Drive Output	Drive Output The e1217X contains two push-pull output buffers for driving bipolar stepping motor During a motor pulse, the n-channel device of one buffer and the p-channel device the other buffer are activated. The p-channel devices of both buffers are active (see Figure 3) between the two pulses.						
	Cycle time and pulse width can be cho	osen via a metal mask option (Table 1).					
RESET	A debounced RESET input is provided. Connecting the RESET input to V_{DD} resets the 12 low-order stages of the frequency divider, thus disabling further motor pulses. Motor pulses, which are in progress when the reset function is applied, will be completed. After releasing the RESET pad from V_{DD} , the next motor pulse appears with a delay of one half motor cycle on the drive output opposed to the former (Figure 4). Due to the debounce circuitry on the RESET input, V_{DD} must be applied for at least 31.2 ms. During RESET the input current is limited to 8 nA typically.						
Test	A test frequency of 512 Hz is output to this pad which can be measured with a high resistance probe ($R \ge 10 M\Omega$, $C \ge 20 pF$). This signal can be used for testing and tuning the oscillator. Connecting TEST to V _{DD} for at least 4 ms changes the motor cycle time from the selected value to the test cycle time (mask options), while the motor pulse width remains unchanged (Figure 3).						
	This feature can be used to reduce the cal parts of the watch.	This feature can be used to reduce the amount of time required for testing the mechani- cal parts of the watch.					
	Table 1. Motor Options						
	Motor-cycle Parameters	Value					
	Cycle time T _M	2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 80, 120 s					
	Motor pulse width t _M	0.98 to 14.65 ms in increments of 0.98 ms					

Motor test cycle time $\rm T_{\rm MT}$

250, 125, 62.5 ms

Absolute Maximum Ratings

Absolute maximum ratings define parameter limits which, if exceeded, may permanently change or damage the device.

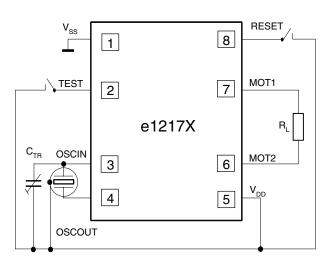
All inputs and outputs on Atmel's circuits are protected against electrostatic discharges. However, precautions to minimize the build-up of electrostatic charges during handling are recommended.

The circuit is protected against supply-voltage reversal for typically 5 minutes.

Parameters	Symbol	Value	Unit
Supply voltage	V _{SS}	-0.3 to +5	V
Input voltage range, all inputs	V _{IN}	$(V_{SS} - 0.3 V) \le V_{IN} \le (V_{DD} + 0.3 V)$	V
Output short-circuit duration		indefinite	
Power dissipation (DIL package)	P _{tot}	125	mW
Operating ambient temperature range	T _{amb}	-20 to +70	°C
Storage temperature range	T _{stg}	-40 to +125	°C
Lead temperature during soldering at 2 mm distance, 10 s	T _{sld}	260	°C

Operating Characteristics

 $V_{DD} = 0$ V; $V_{SS} = -1.55$ V; $T_{amb} = +25^{\circ}$ C; $C_{TR} = 15$ pF, unless otherwise specified.

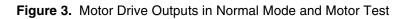

All voltage levels are measured with reference to V_{DD} . Test crystal as specified below.

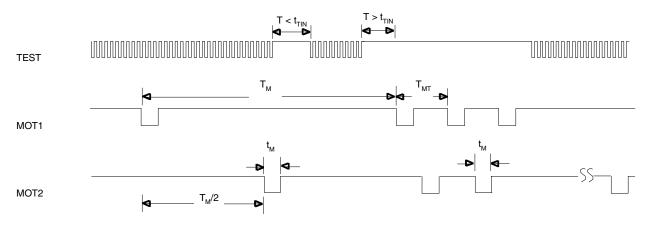
Parameters	Test Conditions	Symbol	Min.	Typ. ⁽¹⁾	Max.	Unit		
Operating voltage	Functional test (Figure 2)	V _{SS}	-1.3		-1.8	V		
Operating current	$C_{oscout} = 16 \text{ pF}, \text{ R}_{L} = \text{R}$	I _{SS}		-180	-300	nA		
RESET input current	RESET = V _{DD}	I _R		8		nA		
Motor Outputs						•		
Motor output current	$R_{L} = 2 \text{ k}\Omega, \text{ V}_{SS} = -1.55 \text{ V}$	I _M	±0.7			mA		
Motor period	otor period				See Table 2			
Motor pulse width		Т _М	See Table 2			ms		
Motor test period		T _{MT}		ms				
Oscillator						•		
Stability	ΔV_{SS} = 100 mV, C _{TR} = 5 pF	$\Delta f/f$		0.1		ppm		
Start-up voltage	Startup within 2 s	V _{ST}	-1.3			V		
Integrated input capacitor		C _{OSC IN}		2	pF			
Integrated output capacitor	C _{OSCOUTmax} = 24 pF	C _{OSC OUT}	See Table 2			pF		

Note: 1. Typical parameters represent the statistical mean values.

4

Figure 2. Functional Test Circuit




Range of trimmer capacitance: $C_{TR} = 5 \text{ pF}$ to 30 pF

Test Crystal		
Specification	Frequency	f = 32,768 Hz
•	Series resistance	R _S = 30 kΩ
	Static capacitance	$C_0 = 1.5 \text{pF}$
	Dynamic capacitance	$C_1 = 3 \text{ fF}$
	Load capacitance	$C_L = 8 \text{ pF}$
Additional Notes	1. It is recommended to	connect the quartz case to V

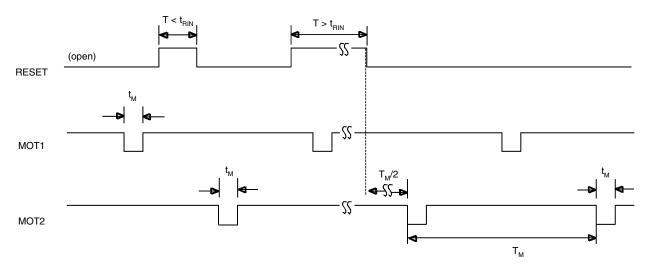

- V_{DD} (by conductive epoxy).
- 2. Capacitive coupling of TEST to OSCIN must be minimized by appropriate layout of the PCB to avoid disturbancing the oscillator.

Figure 4. Motor Drive Outputs and RESET

6

Ordering Information

Table 2. Option List e1217X

	Motor		Integrated Capacitance ⁽¹⁾										
	Cycle (T _M)	Pulse (t _M)	Test (Т _{МТ})										
Option	S	ms	ms	pF	pF	Pad 1	Pad 2	Pad 3	Pad 4	Pad 5	Pad 6	Pad 7	Pad 8
-В	2	3.9	125	2	14	V_{SS}	TEST	OSCIN	OSCOUT	V_{DD}	MOT2	MOT1	RESET
-S	2	5.9	125	2	14	V _{SS}	TEST	OSCIN	OSCOUT	V_{DD}	MOT2	MOT1	RESET
-T	10	3.9	125	2	14	V _{SS}	TEST	OSCIN	OSCOUT	V_{DD}	MOT2	MOT1	RESET
-VA	2	4.9	62.5	4	14	V _{SS}	TEST	OSCOUT	OSCIN	V_{DD}	MOT2	MOT1	RESET
-VB	2	4.9	125	4	14	OSCIN	OSCOUT	RESET	V _{SS}	TEST	MOT2	MOT1	V _{DD}
-VC	40	5.9	125	2	14	OSCIN	OSCOUT	RESET	V _{SS}	TEST	MOT2	MOT1	V _{DD}
-VF	2	3.9	62.5	4	14	OSCIN	OSCOUT	RESET	V _{SS}	MOT2	VDD	MOT1	TEST
-VH	2	3.9	62.5	4	14	V _{SS}	TEST	OSCOUT	OSCIN	V_{DD}	MOT2	MOT1	RESET
-WB	2	4.9	125	4	14	V _{SS}	TEST	OSCIN	OSCOUT	V_{DD}	MOT2	MOT1	RESET

Note: 1. On-chip stray capacitance included

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

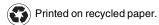
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

e-mail literature@atmel.com


Web Site http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel[®] and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

