October 1999

54FCT377 Octal D-Type Flip-Flop with Clock Enable

National Semiconductor

54FCT377 Octal D-Type Flip-Flop with Clock Enable

General Description

The 'FCT377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable $\overline{(CE)}$ is LOW.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The \overline{CE} input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation.

Features

- Clock enable for address and data synchronization applications
- Eight edge-triggered D flip-flops
- Buffered common clock
- See 'FCT273 for master reset version
- See 'FCT373 for transparent latch version
- See 'FCT374 for TRI-STATE® version
- TTL input and output level compatible
- CMOS power consumption
- Output sink capability of 32 mA, source capability of 12 mA
- Standard Microcircuit Drawing (SMD) 5962-8762701

Ordering Code

Military	Package	Package Description
	Number	
54FCT377DMQB	J20A	20-Lead Ceramic Dual-In-Line
54FCT377FMQB	W20A	20-Lead Cerpack
54FCT377LMQB	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Connection Diagram

Pin Assignment for LCC

Pin	Pin Description	
Names		
$D_0 - D_7$	Data Inputs	
CE	Clock Enable (Active LOW)	
CP	Clock Pulse Input	
$Q_0 - Q_7$	Data Outputs	

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1999 National Semiconductor Corporation DS100952

www.national.com

54FCT377

Mode Select-Function Table

Operating Mode	Inputs		Output	
	СР	CE	D _n	Q _n
Load "1"		I	h	Н
Load "0"		I	Ι	L
Hold		h	Х	No Change
(Do Nothing)	X	н	X	No Change

H = HIGH Voltage Level h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition L = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition X = Inmaterial = LOW-to-HIGH Clock Transition

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

www.national.com

2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +4.75V
in the HIGH State	–0.5V to V_{CC}

Current Applied to Output in LOW State (Max) Twice the rated $I_{\rm OL}~(mA)$ DC Latchup Source Current (Across Comm Operating Range)

54FCT377

–500 mA

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V/\Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns

DC Electrical Characteristics

Symbol	ool Parameter FC		FCT377		Units	V _{cc}	Conditions	
			Min	Тур	Max	1		
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54FCT	4.3			V	Min	I _{OH} = -300 uA
		54FCT	2.4					I _{OH} = –12 mA
V _{OL}	Output LOW Voltage	54FCT			0.2	V	Min	I _{OL} = 300 uA
		54FCT			0.5			I _{OL} = 32mA
IIH	Input HIGH Current				5	μΑ	Max	$V_{IN} = V_{CC}$
I _{IL}	Input LOW Current				-5	μΑ	Max	$V_{IN} = 0.5V$
los	Output Short-Circuit Current		-60			mA	Max	V _{OUT} = 0.0V
Icca	Quiescent Power Supply Current				1.5	mA	Max	V_1 = 0.2V or V_1 = 5.3V, V_{CC} = 5.5V
ΔI_{CC}	Maximum I _{CC} /Input							$V_{I} = V_{CC} - 2.1V$
					2.0	mA	Max	Data Input V _I = V _{CC} – 2.1V
								All Others at V_{CC} or GND
I _{CCD}	Dynamic I _{CC}				0.4	mA/	Max	Outputs Open
						MHz		One bit Toggling, 50% Duty Cycle
I _{cc}	Total Power Supply Current				6.0	mA	Max	V_{CC} = 5.5V, Outputs Open, f _{CP} = 10MHz, 50% Duty Cycle, One bit Toggling at f _I = 5 MHz, 50% Duty

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

3

CT377	AC Elect	trical Characteristi	cs	
Ъ.	Symbol	Parameter	54	ст
5			T _A = -55°C	to +125°C
			$V_{\rm CC} = 4.5$	V to 5.5V
			C _L =	50 pF
			Min	M

Propagation Delay

Fig.	
No.	

Figure 4

Units

ns

Max

15.0

8.3

Ao operating negatienents

CP to O_n

		54FCT			
		T _A = -55°C to +125°C		1	Fig.
Symbol	Parameter	V_{cc} = 4.5V to 5.5V		Units	No.
		C _L = 50 pF			
		Min	Max		
t _s (H)	Setup Time, HIGH	4.0		ns	Figure 6
t _s (L)	or LOW D _n to CP	4.0			
t _h (H)	Hold Time, HIGH	2.5		ns	Figure 6
t _h (L)	or LOW D _n to CP	2.5			
t _s (H)	Setup Time, HIGH	4.5		ns	Figure 6
t _s (L)	or LOW CE to CP	4.5			
t _h (H)	Hold Time, HIGH	2.0		ns	Figure 6
t _h (L)	or LOW CE to CP	2.0			
t _w (H)	Pulse Width, CP,	7.0		ns	Figure 5
t _w (L)	HIGH or LOW	7.0			

2.0

2.0

Capacitance

t_{PLH}

t_{PHL}

Symbol	Parameter	Max	Units	Conditions
CIN	Input Capacitance	10	pF	$V_{\rm CC} = 0V, T_{\rm A} = 25^{\circ}{\rm C}$
C _{OUT} (Note 3)	Output Capacitance	12	pF	$V_{CC} = 5.0V$

Note 3: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

www.national.com

www.national.com

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ø	National Semiconductor Corporation Americas Tel: 1-800-272-9959	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466	National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507
	Fax: 1-800-737-7018 Email: support@nsc.com	Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32	Fax: 65-2504466 Email: sea.support@nsc.com	
www.	national.com	Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.