

54FCT374 Octal D-Type Flip-Flop with TRI-STATE® Outputs

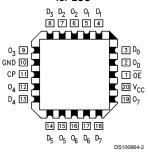
General Description

The 'FCT374 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable $(\overline{\text{OE}})$ are common to all flip-flops.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- TRI-STATE outputs for bus-oriented applications
- TTL input and output level compatible
- Low CMOS power consumption
- Output sink capability of 32 mA, source capability of 12 mA
- Standard Microcircuit Drawing (SMD) 5962-9314901

Ordering Code


Military	Package	Package Description		
	Number			
54FCT374DMQB J20A		20-Lead Ceramic Dual-In-Line		
54FCT374FMQB	W20A	20-Lead Cerpack		
54FCT374LMQB E20A		20-Lead Ceramic Leadless Chip Carrier, Type C		

Connection Diagrams

Pin Assignment for LCC

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1999 National Semiconductor Corporation

DS100964

Pin Descriptions

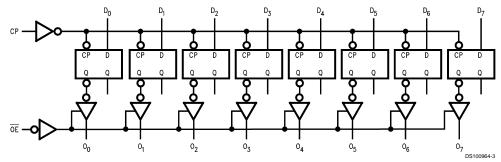
Pin	Description			
Names				
D ₀ -D ₇	Data Inputs			
CP	Clock Pulse Input (Active			
	Rising Edge)			
ŌĒ	TRI-STATE Output Enable			
	Input (Active LOW)			
0,-0,	TRI-STATE Outputs			

Functional Description

The 'FCT374 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs are in a high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.

Function Table

I	nputs		Internal Outputs		Function	
ŌĒ	OE CP D		Q	0		
Н	Н	L	NC	Z	Hold	
Н	Н	Н	NC	Z	Hold	
Н	Ν	L	L	Z	Load	
Н	Ν	Н	Н	Z	Load	
L	Ν	L	L	L	Data Available	
L	Ν	Н	Н	Н	Data Available	
L	Н	L	NC	NC	No Change in Data	
L	Н	Н	NC	NC	No Change in Data	


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial
Z = High Impedance
N = LOW-to-HIGH Transition

NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature -65°C to +150°C -55°C to +125°C Ambient Temperature under Bias

Junction Temperature under Bias Ceramic

V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V-0.5V to +7.0V Input Voltage Input Current -30 mA to +5.0 mA

Voltage Applied to Any Output in the Disabled or

-0.5V to +5.5V Power-Off State –0.5V to $V_{\rm CC}$ in the HIGH State

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Military

Supply Voltage

-55°C to +175°C

-55°C to +125°C

Military

+4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

DC Electrical Characteristics

Symbol	Parameter		FCT374		Units	V _{cc}	Conditions	
			Min	Max	1			
V _{IH}	Input HIGH Voltage		2.0		V		Recognized HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	54FCT	4.3		V	Min	I _{OH} = -300 μA	
	Voltage	54FCT	2.4		V	Min	I _{OH} = -12 mA	
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	I _{OL} = 300 μA	
	Output LOW Voltage	54FCT		0.5	V	Min	I _{OL} = 32mA	
I _{IH}	Input HIGH Current			5	μA	Max	V _{IN} = 2.7V (Note 3)	
			5			$V_{IN} = V_{CC}$		
I _{IL}	Input LOW Current			-5	μA	Max	V _{IN} = 0.5V (Note 3)	
				-5			V _{IN} = 0.0V	
I _{OZH}	Output Leakage Current			10	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$	
I _{OZL}	Output Leakage Current			-10	μA	0 - 5.5V	V _{OUT} = 0.5V; OE = 2.0V	
Ios	Output Short-Circuit Current		-60		mA	Max	V _{OUT} = 0.0V	
I _{CCQ}	Power Supply Current			1.5	mA	Max	$V_{IN} = 0.2V$ or $V_{IN} = 5.3V$, $f_I = 0$ MHz	
ΔI_{CC}	Power Supply Current			2.0	mA	Max	V _{IN} = 3.4V	
I _{CCT}	Additional I _{CC} /Input			6.0	mA	Max	$V_I = V_{CC} - 2.1 \text{V or } V_{IN} = \text{GND, } f_{CP}$ = 10MHz, Outputs open, $\overline{\text{OE}} = \text{GND, one bit toggling at } f_I = 5\text{MHz,}$ 50% duty cycle	
				5.5	mA	Max	$V_I = 5.3 V$ or $V_{CC} = 0.2 V$, $f_{CP} = 10 MHz$, Outputs open, $\overline{OE} = GND$, one bit toggling at $f_I = 5 MHz$, 50% duty cycle	
I _{CCD}	Dynamic I _{CC} No Load			0.4	mA/ MHz	Max	Outputs Open, $\overline{\text{OE}}$ = GND, One bit toggling, 50% duty cycle, V_{IN} = 5.3V or V_{IN} = 0.2V	

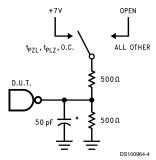
Note 2: For 8-bit toggling, I_{CCD} < 0.8 mA/MHz.

Note 3: Guaranteed, but not tested.

Symbol	Parameter	541	Units	
		T _A = -55°C		
		$V_{CC} = 4.5$		
		C _L = 50 pF		
		Min	Max	
PLH	Propagation Delay	2.0	11.0	ns
PHL	CP to O _n	2.0	11.0	
PZH	Output Enable Time	1.5	14.0	ns
PZL		1.5	14.0	
PHZ	Output Disable Time	1.5	8.0	ns
t _{PLZ}		1.5	8.0	

AC Operating Requirements

Symbol	Parameter	54l T _A = -55°(V _{CC} = 4.: C _L =	Units	
		Min	Max	
t _s (H)	Setup Time, HIGH	2.5		ns
$t_s(L)$	or LOW D _n to CP	2.5		
t _h (H)	Hold Time, HIGH	2.5		ns
$t_h(L)$	or LOW D _n to CP	2.5		
t _w (H)	Pulse Width, CP	7.0		ns
$t_w(L)$	HIGH or LOW	7.0		


Capacitance

Symbol	Parameter	Тур	Units	Conditions (T _A = 25°C)
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V
C _{OUT} (Note 4)	Output Capacitance	9.0	pF	V _{CC} = 5.0V

Note 4: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

Capacitance (Continued)

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

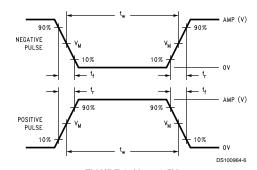


FIGURE 2. V_M = 1.5V

Input Pulse Requirements

Amplitude	Rep. Rate	t _w	t _r	t _f	
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns	

FIGURE 3. Test Input Signal Requirements

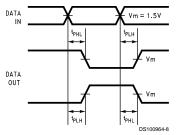


FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

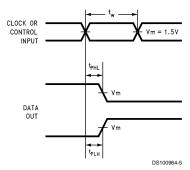


FIGURE 5. Propagation Delay, Pulse Width Waveforms

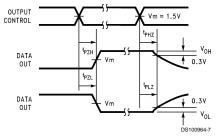


FIGURE 6. TRI-STATE Output HIGH and LOW Enable and Disable Times

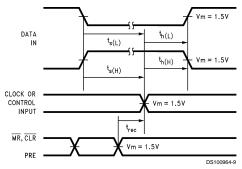
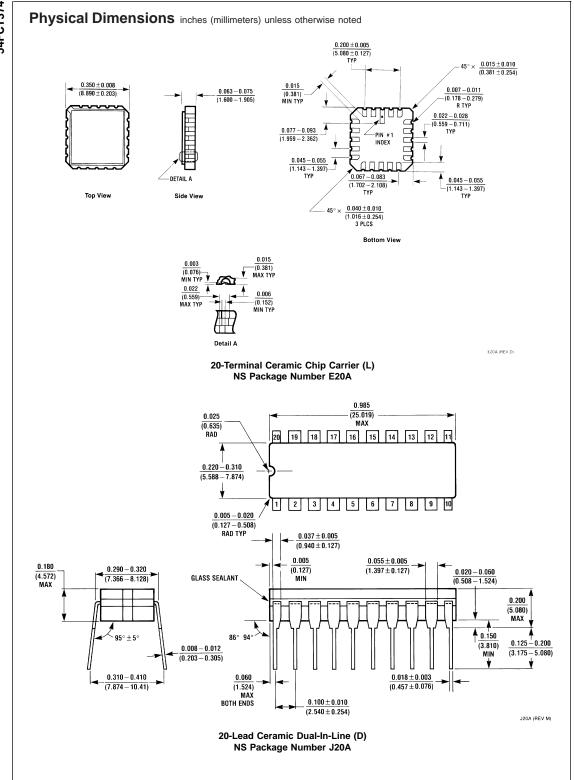
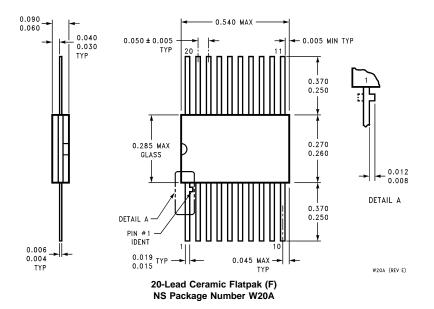




FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.