July 1998

National Semiconductor

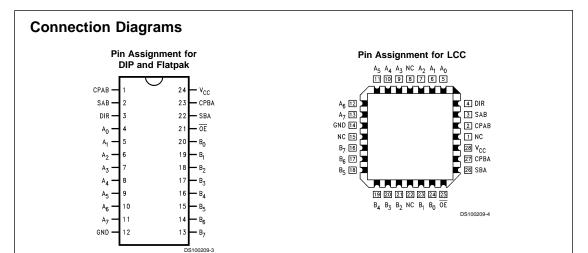
54ABT646 Octal Transceivers and Registers with TRI-STATE® Outputs

General Description

The 'ABT646 consists of bus transceiver circuits with TRI-STATE, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Control \overline{OE} and direction pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when the enable control \overline{OE} is Active LOW. In the isolation mode (control \overline{OE} HIGH), A data may be stored in the A register.

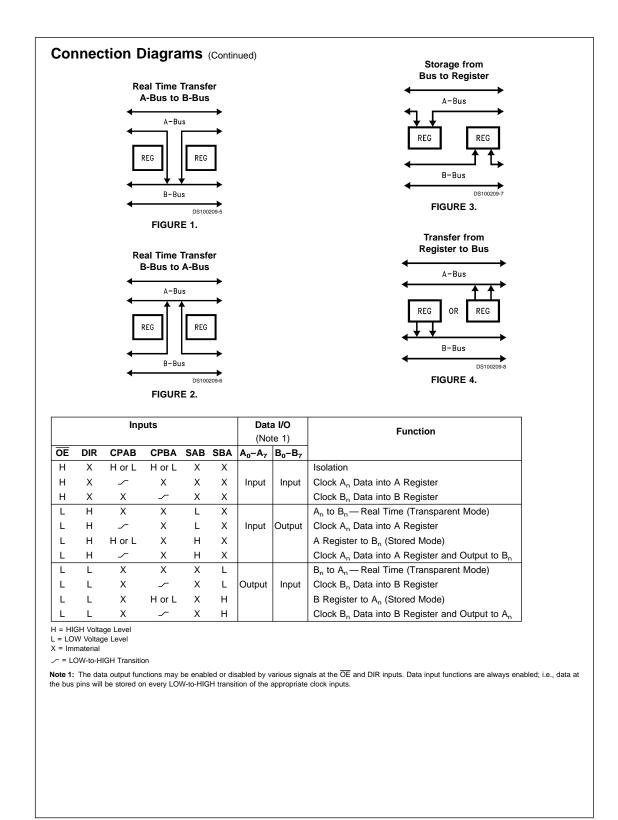
Features

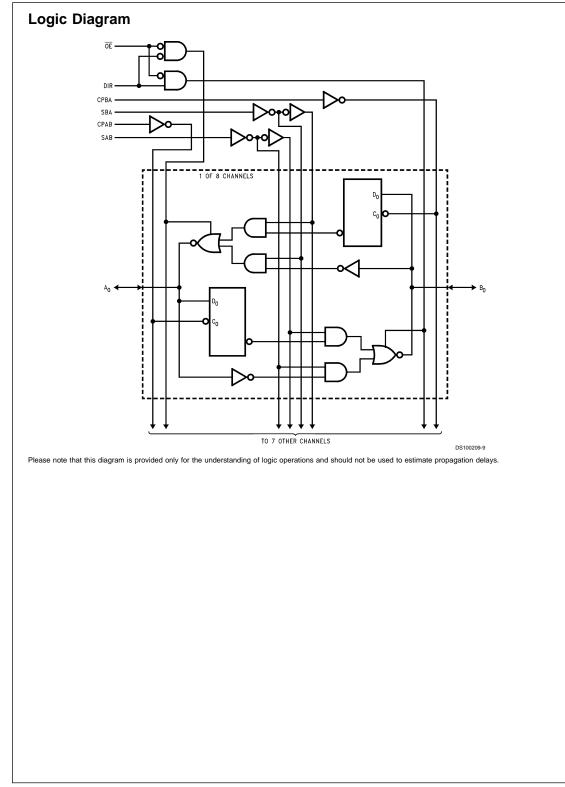
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- A and B output sink capability of 48 mA, source capability of 24 mA
- Guaranteed multiple output switching specifications
 Output switching specified for both 50 pF and 250 pF
- loadsGuaranteed simultaneous switching noise level and
- dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9457701


Ordering Code

Military	Package Number	Package Description	
54ABT646J-QML	J24A	24-Lead Ceramic Dual-In-Line	
54ABT646W-QML	W24C	24-Lead Cerpack	
54ABT646E-QML	E28A	28-Lead Ceramic Leadless Chip Carrier, Type C	

TRI-STATE® is a registered trademark of National Semiconductor Corporation.


www.national.com


© 1998 National Semiconductor Corporation DS100209

Pin Descriptions

Pin	Description	
Names		
A ₀ -A ₇	Data Register A Inputs/	
	TRI-STATE Outputs	
B ₀ -B ₇	Data Register B Inputs/	
	TRI-STATE Outputs	
CPAB,	Clock Pulse Inputs	
СРВА		
SAB, SBA	Select Inputs	
ŌĒ	Output Enable Input	
DIR	Direction Control Input	

4

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias Ceramic	–55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disable or	
Power-Off State	-0.5V to +5.5V
in the HIGH State	–0.5V to $V_{\rm CC}$
Current Applied to Output in LOW State (Max) DC Latchup Source Current	twice the rated I _{OL} (mA) -500 mA

Over Voltage Latchup (I/O)

Recommended Operating Conditions

Free Air Ambient Temperature				
Military	–55°C to +125°C			
Supply Voltage				
Military	+4.5V to +5.5V			
Minimum Input Edge Rate	$(\Delta V/\Delta t)$			
Data Input	50 mV/ns			
Enable Input	20 mV/ns			
Clock Input	100 mV/ns			
Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these				

10V

be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

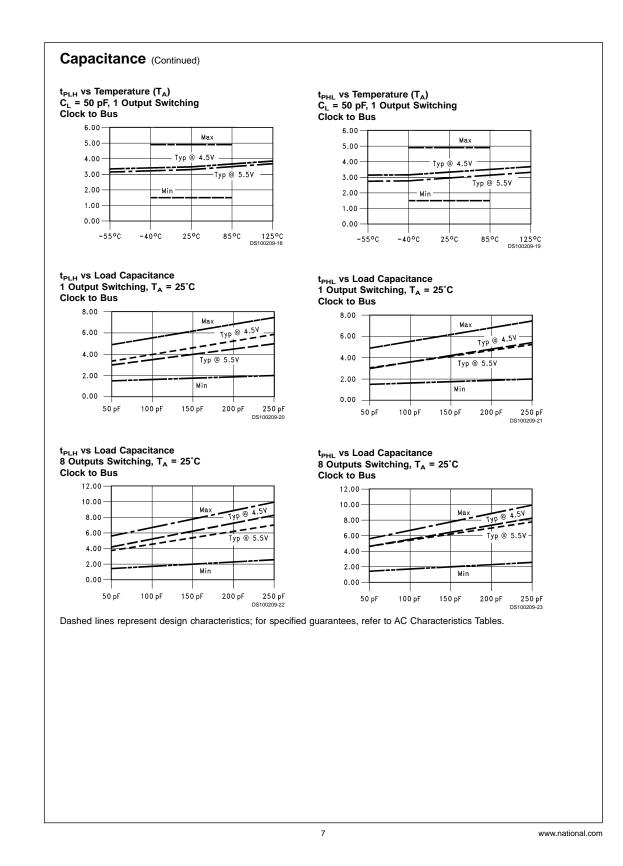
Symbol	Parameter		ABT646		Units	V _{cc}	Conditions	
			Min Typ Max					
VIH	Input HIGH Voltage	2.0			V		Recognized HIGH Signal	
VIL	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)	
V _{OH}	Output HIGH 54ABT Voltage 54ABT	2.5 2.0			V	Min	$I_{OH} = -3 \text{ mA}, (A_n, B_n)$ $I_{OH} = -24 \text{ mA}, (A_n, B_n)$	
V _{OL}	Output LOW 54ABT Voltage			0.55	V	Min	$I_{OL} = 48 \text{ mA}, (A_n, B_n)$	
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA, (Non-I/O Pins) All Other Pins Grounded	
I _{IH}	Input HIGH Current			5	μA	Max	V _{IN} = 2.7V (Non-I/O Pins) (Note 5)	
				5			V _{IN} = V _{CC} (Non-I/O Pins)	
I _{BVI}	Input HIGH Current Breakdown Test			7	μA	Max	V _{IN} = 7.0V (Non-I/O Pins)	
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)			100	μA	Max	$V_{IN} = 5.5V (A_n, B_n)$	
I _{IL}	Input LOW Current			-5	μA	Max	V _{IN} = 0.5V (Non-I/O Pins) (Note 5)	
				-5			V _{IN} = 0.0V (Non-I/O Pins)	
I _{IH} + I _{OZH}	Output Leakage Current			50	μA	0V-5.5V	$V_{OUT} = 2.7V (A_n, B_n); \overline{OE} = 2.0V$	
I _{IL} + I _{OZL}	Output Leakage Current			-50	μA	0V-5.5V	$V_{OUT} = 0.5V (A_n, B_n); \overline{OE} = 2.0V$	
l _{os}	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0V (A_n, B_n)$	
I _{CEX}	Output HIGH Leakage Current			50	μA	Max	$V_{OUT} = V_{CC} (A_n, B_n)$	
I _{ZZ}	Bus Drainage Test			100	μA	0.0V	V _{OUT} = 5.5V (A _n , B _n); All Others GND	
I _{CCH}	Power Supply Current			250	μA	Max	All Outputs HIGH	
I _{CCL}	Power Supply Current			30	mA	Max	All Outputs LOW	
I _{ccz}	Power Supply Current			50	μA	Max	Outputs TRI-STATE; All Others GND	
I _{CCT}	Additional I _{CC} /Input			2.5	mA	Max	$V_1 = V_{CC} - 2.1V$ All Other Outputs at V_{CC} or GND	
I _{CCD}	Dynamic I _{CC} No Load (Note 5)			0.18	mA/MHz	Max	Outputs Open \overline{OE} and DIR = GND, Non-I/O = GND or V _{CC} (Note 4) One Bit toggling, 50% duty cycle	

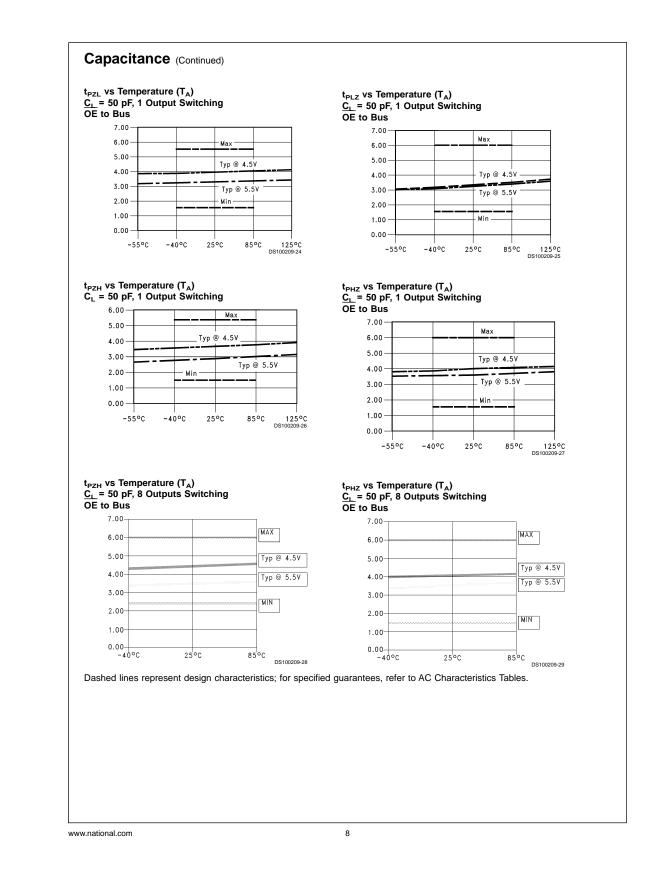
DC Electrical Characteristics (Continued)

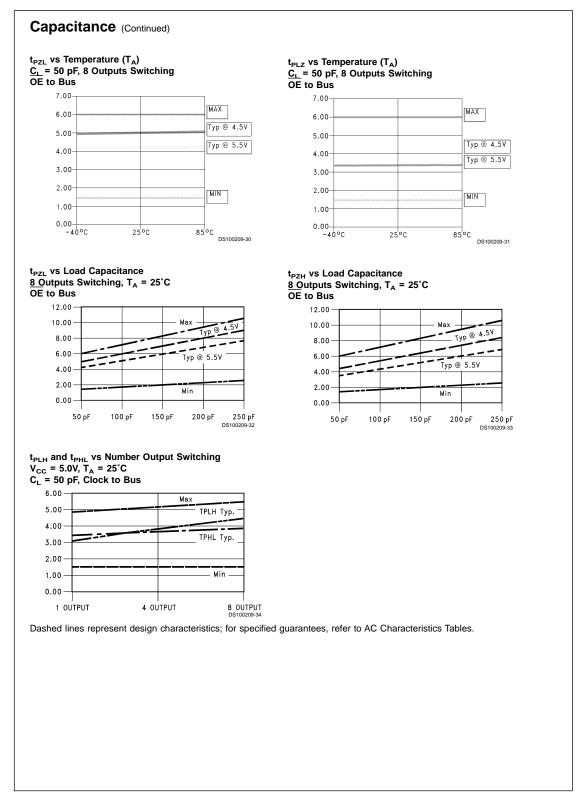
Note 4: For 8-bit toggling, I_{CCD} < 1.4 mA/MHz. Note 5: Guaranteed but not tested.

AC Electrical Characteristics

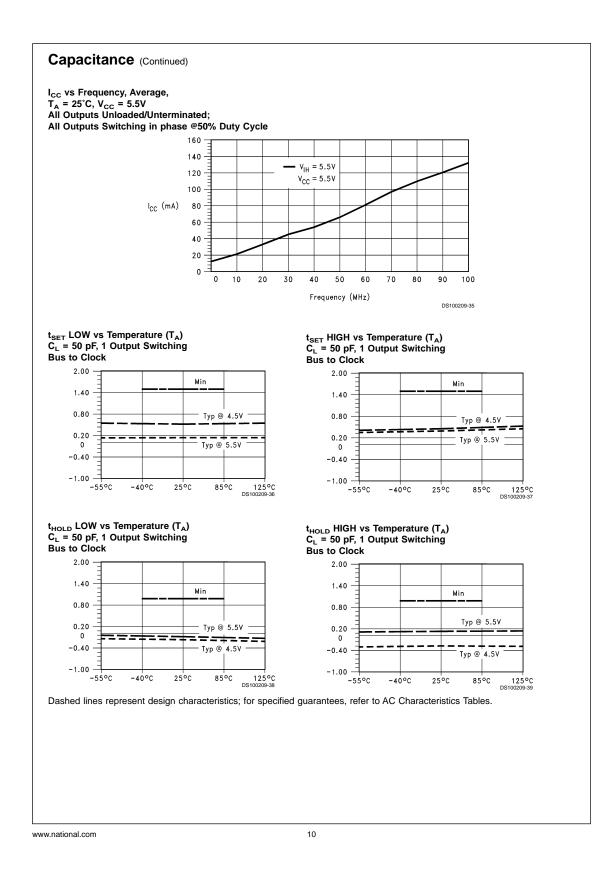
		54ABT			
Symbol		T _A = -55°C	C to +125°C	Units	Fig. No.
	Parameter	V _{CC} = 4	.5V–5.5V		
		C _L =	50 pF		
		Min	Max		
f _{max}	Max Clock Frequency	125		MHz	
t _{PLH}	Propagation Delay	2.2	8.8	ns	Figure 8
t _{PHL}	Clock to Bus	1.7	8.8		
t _{PLH}	Propagation Delay	1.5	7.9	ns	Figure 8
t _{PHL}	Bus to Bus	1.5	7.9		
t _{PLH}	Propagation Delay	1.5	8.1	ns	Figure 8
t _{PHL}	SBA or SAB to A _n to B _n	1.5	8.9		
t _{PZH}	Enable Time	1.0	7.3	ns	Figure 10
t _{PZL}	\overline{OE} to A_n or B_n	1.9	8.8		
t _{PHZ}	Disable Time	1.5	9.3	ns	Figure 10
t _{PLZ}	\overline{OE} to A_n or B_n	1.5	9.3		
t _{PZH}	Enable Time	1.0	7.7	ns	Figure 10
t _{PZL}	DIR to A _n or B _n	2.2	9.5		
t _{PHZ}	Disable Time	1.5	8.7	ns	Figure 10
t _{PLZ}	DIR to A _n or B _n	1.5	9.2		

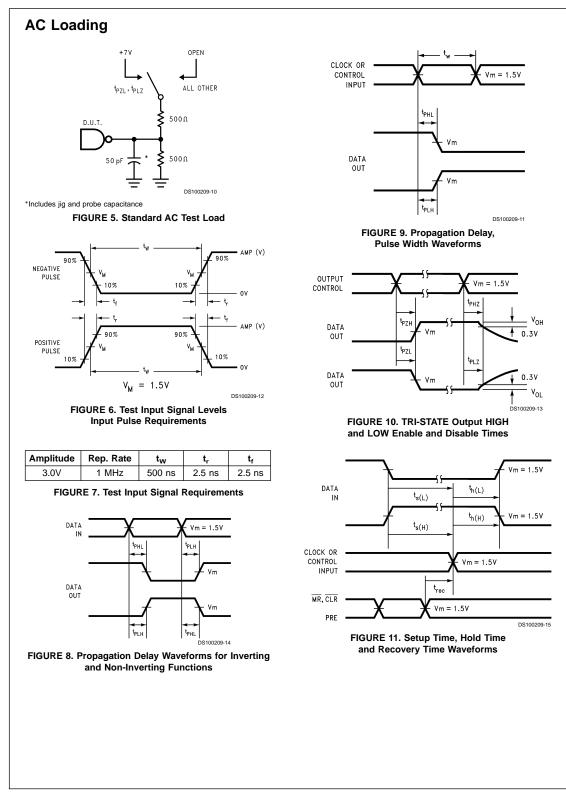

AC Operating Requirements

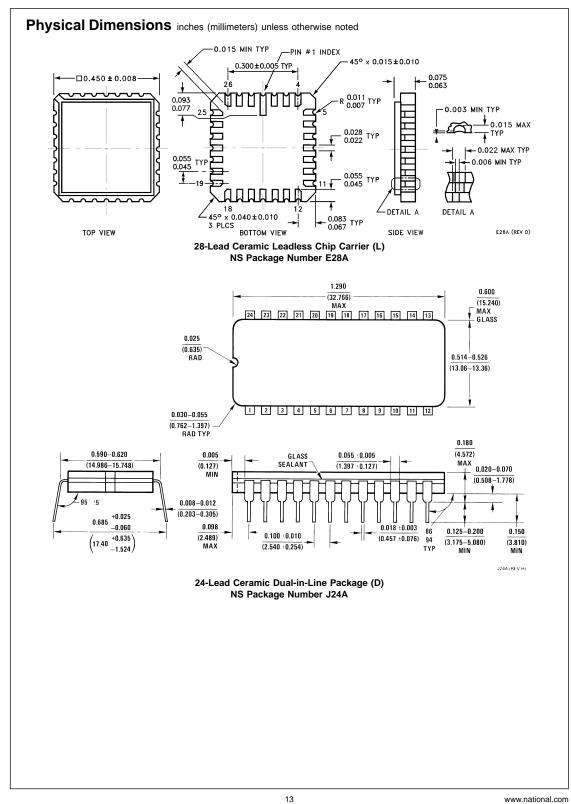

Symbol	Parameter	$T_{A} = -55^{\circ}$ $V_{CC} = 4$	ABT C to +125°C .5V–5.5V 50 pF	Units	Fig. No.
		Min	Max	7	
t _s (H)	Setup Time, HIGH	3.5		ns	Figure 11
t _S (L)	or LOW Bus to Clock				
t _H (H)	Hold Time, HIGH	1.0		ns	Figure 11
t _H (L)	or LOW Bus to Clock				
t _w (H)	Pulse Width,	4.0		ns	Figure 9
t _w (L)	HIGH or LOW				

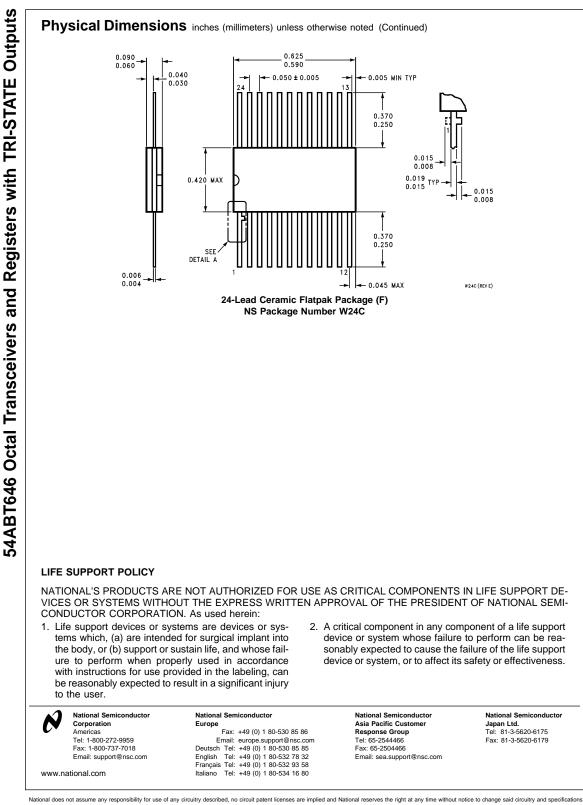

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5	pF	V _{CC} = 0V (non I/O pins)
C _{I/O} (Note 6)	Output Capacitance	11	pF	$V_{\rm CC} = 5.0V (A_{\rm n}, B_{\rm n})$


Note 6: C_{I/O} is measured at frequency, f = 1 MHz, per MIL-STD-883B, Method 3012.




9



Downloaded from Elcodis.com electronic components distributor

12

